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Abstract—The shared replay buffer is the core of synergy
in evolutionary reinforcement learning (ERL). Existing methods
overlooked the objective conflict between population evolution
in evolutionary algorithm and ERL, leading to poor quality
of the replay buffer. In this paper, we propose a strategic
evolutionary reinforcement learning algorithm with operator
selection and experience filter to address the objective conflict
issue and improve the synergy from three aspects. 1) An operator
selection strategy is proposed to enhance the performance of
all individuals, thereby fundamentally improving the quality
of experiences generated by the population. 2) An experience
filter is introduced to filter the experiences obtained from the
population, maintaining the long-term high quality of the buffer.
3) A dynamic mixed sampling strategy is introduced to improve
the efficiency of RL agent learning from the buffer. Experiments
in four MuJoCo locomotion environments and three Ant-Maze
environments with deceptive rewards demonstrate the superiority
of the proposed method. Additionally, the practical significance
of the proposed method is verified on a low-carbon multi-energy
microgrid energy management task.

Index Terms—Evolutionary reinforcement learning, evolution-
ary algorithms, deep reinforcement learning, replay buffer.

I. INTRODUCTION

DEEP Reinforcement Learning (DRL) algorithms have
achieved significant success in numerous fields, such as

games [1], [2], robotic systems [3], [4], and learning-based
control [5], [6]. The effectiveness of reinforcement learning
highly depends on the hand-crafted design of the reward
functions [7], [8]. In many real-world scenarios, designing a
reward function that provides timely and accurate feedback is
challenging [9]. For example, in resource scheduling tasks,
rewards are typically sparse and delayed, as they are only
received after a sequence of operations is completed [10].
When rewards are sparse and delayed, the learning efficiency
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of DRL decreases drastically due to poor exploration capabil-
ity [11], [12]. Evolution Algorithms (EAs), a class of gradient-
free optimization algorithms [13] including genetic algorithm
[14] and evolutionary strategy [15], have recently emerged as a
promising alternative to DRL [16], [17]. Due to the population-
based and gradient-free random search characteristics, EAs are
indifferent to the sparsity of reward and are robust to scenarios
with long-time horizons [18], [19]. Meanwhile, EAs have the
advantages of maintaining a beneficial exploration and im-
proving robustness, contributing to a more stable convergence
[20]. However, the gradient-free EAs encounter challenges
such as high sample complexity and slow convergence rate
when tackling high-dimensional problems [21], [22]. DRL and
EAs have complementary strengths, and their combination has
emerged as a promising research direction.

Leveraging the strengths of both DRL and EA synergis-
tically, Khadka et al. [18] proposed a new RL paradigm
called Evolutionary Reinforcement Learning (ERL). It main-
tains an actor-network population evolved through multi-point
crossover and Gaussian mutation, and an RL agent trained
using gradient-based optimization. The population and RL
agent are bridged via a shared replay buffer and a synchroniza-
tion mechanism, effectively accelerating the learning process.
Subsequently, many ERL algorithms have been proposed to
pursue better efficacy. Some ERL algorithms prioritize increas-
ing the efficiency of population evolution, in which several
advanced crossover and mutation operators are proposed, such
as proximal mutation [23], distillation crossover [23], and
distillation mutation [24]. Cross Entropy Method (CEM) is
also used as a method for evolving populations [25], [26].
Some ERL algorithms improve performance by modifying
the integration of population and RL agent. ERL-Re2 [27]
enables the actor networks in the population to share nonlinear
state representation layers with the RL agent while retaining a
separate linear policy layer. In CoERL [28], rather than main-
taining a population of actor networks, cooperative coevolution
is used to evolve the actor network of the RL agent. ERL-
TD [24] leverages multiple critic networks and a truncated
variance strategy to mitigate overestimation bias and improve
the learning efficiency of the RL agent.

Although existing ERL algorithms vary in many aspects,
most of them still follow the basic experience generation
and utilization method of the original ERL framework that
the experiences generated by a gradient-free population are
indiscriminately injected into a shared replay buffer, while
a gradient-based RL agent learns from the buffer using a
uniform random sampling strategy. However, this method has
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overlooked the quality of the experience generated by the
population. Existing ERL algorithms tend to focus on the
good-performing individuals in the population while paying
less attention to the detrimental effects that poorly performing
individuals may introduce. Due to the stochastic nature of EAs,
it is inevitable that many poorly performing individuals will
emerge during the evolution process. In the basic experience
utilization method, the low-quality experiences they generate
are also injected into the shared replay buffer. An excessive
accumulation of low-quality experiences can significantly de-
grade the quality of the buffer. Meanwhile, there is usually
an experience distribution mismatch between the experiences
generated by the population and the RL agent [30]. The
traditional uniform random sampling strategy used in the
existing ERL algorithms may fail to fully take advantage of
the shared replay buffer. Hence, the learning efficiency of the
RL agent is hindered, thereby affecting the overall synergy.

To address the aforementioned issues, we propose a Strate-
gic Evolutionary Reinforcement Learning algorithm with Op-
erator Selection and Experience Filter (SERL-OS-EF), which
aims to improve the efficiency of information flow between the
population and the RL agent. In contrast to existing methods,
our method emphasizes the performance of all individuals
during the evolutionary process, rather than solely focusing on
the good-performing individuals. Additionally, we place sig-
nificant emphasis on maintaining the long-term quality of the
shared replay buffer from experience generation and injection.
Meanwhile, we design a dynamic mixed sampling strategy to
replace the conventional uniform random sampling method,
mitigating the experience distribution mismatch problem and
maximizing the utilization of the shared replay buffer.

The main contributions of this work are summarized as
follows:

• We investigate the issue of the bad influence of accu-
mulating a large number of low-quality experiences in
the shared replay buffer and attribute this issue to the
objective conflict between population evolution in EA and
ERL.

• To enhance the quality of the shared replay buffer, an
operator selection strategy is proposed to enhance the
overall quality of the population, thereby generating more
high-quality experiences. Meanwhile, an experience filter
is proposed to filter out low-quality experiences from the
population, which is crucial for maintaining the long-term
high quality of the buffer.

• A dynamic mixed sampling strategy is employed to
promote the learning efficiency of the RL agent, thereby
strengthening the synergy between the EA and RL com-
ponents within the ERL framework.

• We compare our method with the state-of-the-art methods
in four MuJoCo environments, three Ant-Maze environ-
ments, and a practical low-carbon multi-energy microgrid
energy management task. The results show that our
method outperforms existing methods, achieving state-
of-the-art results in the Ant-Maze environments and the
practical task, while also achieving the best average rank
in four MuJoCo environments.

The rest of this paper is organized as follows. Section II
introduces some critical techniques related to ERL and existing
studies of ERL. Section III analyzes the objective conflict
between population evolution in EA and ERL, and demon-
strates the proposed method in detail. Section IV presents
the empirical studies on benchmark and real-world problems.
Finally, the conclusion is drawn in Section V.

II. BACKGROUND

This section introduces the notations and fundamental con-
cepts of ERL and related work.

A. Evolutionary Reinforcement Learning

In ERL, as shown in Fig. 1, a population of actor networks
and an actor-critic RL agent RLagent, consisting of a RLactor

and a RLcritic, are initialized. The actor population and
RLagent adopt different mechanisms for optimization. The
population evolution follows the framework of EAs. The return
obtained from the interaction between each individual and
the environment is considered as the fitness value of the
individual. Some individuals are selected based on their fitness
values to generate new individuals. To ensure the quality of
offspring, individuals with higher fitness values have a greater
probability of being selected. EA operators directly manipulate
the selected individuals, i.e. evolving the neural networks they
represent. In the evolution process, a diverse set of experiences
is generated and saved into a fixed-capacity replay buffer,
which is shared by the population and RLagent. RLagent

is trained by a gradient-based optimizer through sampling
experiences from the replay buffer.
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Fig. 1. Framework of ERL.

The shared replay buffer and synchronization are the key
components of the bidirectional transfer of information in the
ERL framework. The shared replay buffer facilitates the flow
of information from the population to RLagent . Synchroniza-
tion facilitates the flow of information from RLagent to the
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TABLE I
A COMPARISON OF SOME REPRESENTATIVE ERL ALGORITHMS.

Algorithm Operators RL type Experience injection Sampling methods

ERL [18] multi-point crossover, Gaussian mutation DDPG indiscriminate uniform random sampling
PDERL [23] distillation crossover, proximal mutation DDPG indiscriminate uniform random sampling

CEM-RL [25] CEM TD3 indiscriminate uniform random sampling
NERL [26] CEM, novelty search TD3 indiscriminate uniform random sampling

SUPE-RL [29] Gaussian mutation Rainbow/PPO indiscriminate uniform random sampling
ERL-Re2 [27] multi-point crossover, Gaussian mutation TD3 with shared network indiscriminate uniform random sampling
ERL-TD [24] distillation mutation SAC with truncated variance indiscriminate uniform random sampling
CoERL [28] cooperative coevolution SAC indiscriminate uniform random sampling
TR-ERL [30] canonical evolution strategy TD3 indiscriminate fix mixed sampling

Ours opposite-based proximal mutation TD3 discriminative filtering dynamic mixed samplinggradient optimization operator

population. The gradient-based RLagent have a higher sample
efficiency [18]. Synchronization will offer a more promising
parameter space for the population to explore. Specifically,
synchronization refers to replacing the worst individual in
the population with the actor network of RLagent at regular
intervals.

B. Related work

Most ERL algorithms typically involve an evolutionary
loop alongside a reinforcement learning loop [31]. In the
RL loop, RLagent usually updates with gradient methods,
where the specific update strategy varies across different actor-
critic algorithms. In the evolutionary loop, the population is
used to generate a diverse set of experiences and evolved
by gradient-free methods. Population evolution methods are
generally classified into two main categories: genetic algorithm
and evolution strategy.

In the original ERL, multi-point crossovers and Gaussian
mutation are used to generate a new population. Q-filtered
distillation crossovers and proximal mutation based on back-
propagation are proposed to mitigate catastrophic forgetting in
multi-point crossovers and Gaussian mutation in PDERL [23].
To improve the performance of mutated offspring, distilled
mutation [24] utilizes elite individuals in the population to
provide directional guidance for the mutation process through
policy distillation. In Genetic-Gated Networks (G2N) [32] and
Soft Updates for Policy Evolution (SUPE-RL) [29], the new
population is obtained by conducting crossover and mutation
on RLagent. To address the scalability issue of ERL, CoERL
[28] decomposes the policy optimization problem into mul-
tiple subproblems and optimizes them sequentially. During
this process, it adaptively adjusts the perturbation magnitude
of subproblems, which can be regarded as an approximate
mutation strategy. Besides genetic algorithms, evolutionary
strategies are also widely applied in ERL algorithms [30], [33].
CEM [34] is an evolution strategy algorithm that optimizes
the parameters by solving a sequence of auxiliary smooth
optimization problems using Kullback-Leibler cross-entropy.
Pourchot et al. proposed a CEM-RL algorithm [25], which
combines TD3 and CEM. To avoid premature convergence, a
novelty search is introduced into the CEM-RL framework to
encourage individuals to search an entirely new policy space
[26]. Other follow-ups of CEM-RL are CEM-SAC [35], which

is a hybridization between CEM and Soft-Actor-Critic (SAC)
[36], and CEM-ACER [37], which combines CEM and Actor-
Critic with Experience Replay (ACER) [38].

Table I summarizes the characteristics of some represen-
tative algorithms. It is evident that the differences among
existing ERL algorithms primarily lie in the EA operators
and RL types, while they remain identical in the experience
injection method and sampling method. This phenomenon
stems primarily from existing ERL algorithms that directly
incorporate EAs into the ERL framework, overlooking the
objective conflict between population evolution in EA and
ERL. In the next section, we will reveal the objective conflict
and its detrimental impact on the shared replay buffer and
the synergy in ERL. We address these issues by proposing
a new population evolution method, improving the quality of
the shared replay buffer, and implementing a more effective
experience sampling method.

III. PROPOSED METHOD

This section begins with an analysis of the objective conflict
between population evolution in EA and ERL. Then, we
present the overall framework of our method and provide a
comprehensive explanation, followed by a thorough descrip-
tion of the specific implementation details. For better under-
standing and reference, we have summarized the notations
used in our method and presented them in Table II.

A. Objective conflict between population evolution in EA and
ERL

We investigate the existence of the objective conflict from
both theoretical and empirical perspectives. First, the objec-
tives of population evolution in EA and ERL are defined as
follows:

θ∗ = arg max
θ∈

⋃T
t=1 P(t)

F (θ) (1)

maximize
P(t)

[
F (P(t)),D(P(t))

]
, t = 1, 2, . . . , T. (2)

where t and T are the current and maximum number of
iteration, respectively. θ denotes an individual within the popu-
lation across generations. θ∗ is the best-performing individual.
P(t) denotes the population in t-th iteration. F (·) and D(·) are
the fitness and diverse functions, respectively.
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TABLE II
NOTATION LIST

Notation Definition

RLagent Gradient-based reinforcement learner in ERL
RLactor The actor-network in the RLagent

RLcritic The critic network in the RLagent

t, t− 1, t+ 1 The current, previous, and next iterations
T The maximum number of iteration
N The size of the population
ψ The elite fraction of the population
δ The threshold for identifying low-quality individuals
Pe The performance enhancement probability
Pd The performance degradation probability
Ps The performance stagnation probability
ζ, p0 The parameter and initial probability for Pe

γ The degradation-induced low-quality probability
γ, η The stagnation-induced low-quality probability
ρ The proportion of low-quality individuals
RBpop The replay buffer of the population
RBl The replay buffer for low-quality individuals
RBh The replay buffer for high-quality individuals
B, Bl, Bh The mini-batch from RBpop, RBl, RBh

ϕ The parameter of critic network
Subi The i-th subpopulation
Si
t , Si

t+1 the states of Subi in t-th and t+ 1-th iterations
S
subi
t The information of Subi in t-th iteration
Spop
t The information of population in t-th iteration
FBi

t The best fitness value of Subi in t-th iteration
FAi

t The average fitness of Subi in t-th iteration
FBDi

t FBi
t - FBi

t−1

FADi
t FAi

t - FAi
t−1

FBpop
t The best fitness values of the population

in t-th iteration
FApop

t The average fitness values of the population
in t-th iteration

Norm(), abs Normalization function and absolute value function
ait The action for Subi in current iteration
R The reward obtained by taking action ait in state Si

t
se The sensitivity of the output to the weights.
▽ Gradient operator
A The dimension of the output action
NM The batch size in opposite-based proximal mutation
µ The actor-network in the mutation operator
θ The parameters of actor-network
σ The mutation magnitude parameter
α The scaling factor in mutation
Fa, Fb The fitness values before and after the basic mutation
Fi The fitness value of individual i
BF The best fitness of the population
β The parameter controlling filter intensity
dDrl

(s, a) The batches sampled from the RLagent buffer
dDpop (s, a) The batches sampled from the population buffer
d̂(s, a) The final batch used by the RLagent

m The proportion sampled from the RLagent buffer
k The parameter controlling the range of m

It is evident that the objective of the EA is to find the
best-performing individual. Hence, not all individuals in the
population need to perform well in EAs, as ultimately only
the best individual is chosen to serve as the final solution.
However, the objective of the ERL is to generate more
diverse and beneficial experiences throughout the evolutionary
process, which focus on the overall performance of the entire
population. The root of the objective conflict in EA and
ERL lies in the accumulation effect of low-quality individuals
during population evolution. In EA, low-quality individuals
are continuously eliminated through the evolutionary process,
and once discarded, their influence on the algorithm effectively

ceases. However, in ERL, low-quality individuals interact with
the environment and contribute experiences to the shared
replay buffer. These experiences may persist over time and
continue to influence policy updates, even after the individuals
themselves have been discarded. It is worth noting that due
to the stochastic nature of EAs, new low-quality individuals
are continuously generated even as old ones are discarded.
Hence, the cumulative negative impact caused by low-quality
individuals should not be underestimated.

Next, we employ mathematical analysis to investigate the
accumulation of low-quality individuals in EA. In each itera-
tion, the population consists of N individuals. The proportion
of elite individuals inherited from the previous generation
within the current population is denoted as ψ and the remain-
ing (1−ψ)N individuals generated by crossover and mutation.
We define a low-quality individual as one whose fitness falls
below a threshold (e.g., δ = 0.1) of the current best fitness.
As the population converges, the probability (Pe) of further
enhancement for individuals gradually decreases. Meanwhile,
we assume that the probability (Pd) of degradation remains
constant and the probability (Ps) of stagnation increases.

Pe(t) = p0e
−ζt, ζ > 0 (3)

Pd(t) = pd (4)

Ps(t) = 1− e−ζt − pd (5)

where p0 denotes the initial probability of Pe and pd is a
constant.

We define q(t) as the proportion of low-quality individuals
in t-th iteration, mainly derived from individuals with de-
graded or stagnant performance. Thus, it can be approximated
by:

q(t) ≈ γ · Pd(t) + η · Ps(t) (6)

where γ, η ∈ [0, 1] denote the probabilities of falling into
the low-quality region under performance degradation and
stagnation, respectively. The expected number of low-quality
individuals in t-th iteration is given by:

E[L(t)] = (1− ψ)N
(
γpd + η(1− p0e−ζt − pd)

)
(7)

Consequently, the cumulative number of low-quality indi-
viduals up to generation T becomes:

C(T ) =

T∑
t=1

E[L(t)] (8)

= (1− ψ)N
T∑

t=1

(
γpd + η(1− p0e−ζt − pd)

)
(9)

= (1− ψ)N
T∑

t=1

(
(γ − η)pd + η(1− p0e−ζt)

)
(10)

= (1− ψ)N
[
T ((γ − η)pd + η)− ηp0 ·

e−ζ(1− e−ζT )

1− e−ζ

]
(11)

As T →∞, the expression of C(T ) can be formulated as:
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C(T ) = (1− ψ)N [T ((γ − η)pd + η)− C0] (12)

C0 = ηp0 ·
e−ζ

1− e−ζ
(13)

where C0 is a constant.
The formula indicates that as T → ∞, the cumulative

number of low-quality individuals exhibits a linear positive
correlation with T . In the ERL framework, the experiences
generated by all individuals are injected in the shared replay
buffer. All individuals are assumed to generate the same
number of experiences per episode. The number of low-quality
individuals increases over time, leading to the accumulation
of low-quality experiences in the shared replay buffer. Since
the RL agent performs gradient updates based on uniformly
random sampling from the buffer, the proportion of low-quality
experiences in a sampled batch can be expressed as follows.

ρ =
C(T )

NT
(14)

= (1− ψ)
[
(γ − η)pd + η − ηp0 ·

e−ζ(1− e−ζT )

T (1− e−ζ)

]
(15)

To better illustrate the impact of accumulated low-quality
experiences on RL training, we equivalently model the sam-
pling process as drawing experiences proportionally from
separate low-quality RBl and high-quality RBh replay buffers
and the sampling proportion of RLagent experiences is tem-
porarily excluded from consideration. In the update of the
policy gradient, the gradient ∇θJ(θ) can be expressed as
a weighted combination of gradients calculated from each
individual buffer:

∇θJ(θ) =
1

|B|
∑
s∈B
∇aQϕ(s, a)

∣∣
a=πθ(s)

· ∇θπθ(s) (16)

=
|Bl|
|B|
·

(
1

|Bl|
∑
s∈Bl

∇aQϕ(s, a)
∣∣
a=πθ(s)

· ∇θπθ(s)

)

+
|Bh|
|B|
·

(
1

|Bh|
∑
s∈Bh

∇aQϕ(s, a)
∣∣
a=πθ(s)

· ∇θπθ(s)

)
(17)

= ρ · ∇θJl(θ) + (1− ρ) · ∇θJh(θ) (18)

where the B denotes the combined training batch, consisting of
samples from two separate replay buffers. The Bl and Bh are
the sub-batch sampled from the RBl and RBh, respectively.
Qϕ(s, a) represents the estimated Q-value computed by the
critic network, where ϕ denotes its parameters. πθ(s) is the
action output by the actor network, parameterized by θ, given
state s.
ρ plays a crucial role in shaping the direction of optimiza-

tion of the actor in the RL agent. A higher value of ρ increases
the influence of the low-quality experience buffer, which
can lead to slower convergence. When the RL agent suffers
from reduced learning efficiency, it becomes less capable of
generating and synchronizing high-quality policies back to
the population, slowing evolutionary progress and accelerating

(a) HalfCheetah-v4 (b) Hopper-v4

(d) Ant-v4(c) Walker2D-v4

Fig. 2. The cumulative returns curves of the population (ten individuals)
and the performance of RLagent during the evolutionary process in PDERL.
Green curves represent individuals with low-return experiences. Gray curves
represent individuals with unstable experiences. Red curves represent in-
dividuals with high-return experiences. Blue curves is the performance of
RLagent.

the accumulation of low-quality experiences, which eventually
triggers a performance degradation loop.

Finally, we experimentally analyze the objective conflict.
To gain an intuition of the impact of the objective conflict, we
evaluate the quality of experiences generated by the population
in PDERL and their impact on the performance of RLagent, as
depicted in Fig. 2. Each point is calculated by summing the re-
wards from interacting with the environment over a trajectory.
Furthermore, all experiences from these entire trajectories are
indiscriminately injected into the replay buffer. Hence, these
curves reflect the quality and the experience distribution of the
replay buffer and their impact on the performance of RLagent.

It is observed that there is a noticeable performance gap
among the individuals in the population during the train-
ing process in all environments. The performance of elite
individuals exhibits relative stability. However, because of
the inherent randomness, while enhancing the performance
of some individuals, EA operators may also generate some
bad individuals. Around half of the individuals consistently
perform poorly and some unstable individuals show great
performance fluctuations. These individuals persist throughout
the entire training process.

The bad individuals might not have an immediate fatal
impact on EAs, but they can cause prompt and severe adverse
consequences in ERL algorithms. As all experiences from the
population are indiscriminately injected into the replay buffer,
many low-return experiences are also stored in the buffer.
The increasing prevalence of low-return experiences in the
buffer leads to a continuous deterioration in the quality of the
buffer. Similar phenomena were also observed in the original
ERL [30]. An excessive proportion of low-return experiences
within the replay buffer will hamper the learning efficiency
of RLagent. Specifically, from Fig. 2, we can see that in
Hopper and Walker2D, RLagent significantly lags behind
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elite individuals of the population and exhibits instability.
In Ant-v4, the performance of the RLagent is particularly
poor. Although elite individuals contribute some high-return
experiences, the majority of bad and unstable individuals
in the population inject more low-return experiences into
the buffer. Consequently, RLagent deteriorates to the most
unfavorable condition and becomes irreparable, which will
further seriously impact the effectiveness of synchronization.

Hence, ERL algorithms should prioritize improving the
performance of all individuals in the population as much as
possible, rather than solely focusing on seeking an optimal
individual. Only in this way can the population generate more
beneficial experiences. Consequently, the training efficiency of
RLagent is improved, the effect of synchronization becomes
more pronounced, and the evolution of the population becomes
more efficient, leading the ERL algorithms into a positive
feedback loop.

B. Strategic Evolutionary Reinforcement Learning with Oper-
ator Selection and Experience Filter

A diagram of SERL-OS-EF is given in Fig. 3. In the
population evolution, we focus on enhancing the overall
quality of the population to generate more high-quality ex-
periences. Due to the stochastic nature of EAs, individuals
will not always be good. Therefore, we divide the population
into two subpopulations based on their fitness: half of the
individuals with higher fitness sub1 and the other half with
lower fitness sub2. The operator selector matches the most
suitable evolutionary operator to each subpopulation based on
its state. The two subpopulations evolve using their assigned
operators respectively and are subsequently merged into a
new population. Individuals within the population interact with
the environment to generate new experiences. Before being
injected into the replay buffer, these experiences must be
filtered by the experience filter to maintain the long-term
high quality of the replay buffer. To improve the learning
efficiency of RLagent and address the experience distribution
mismatch, a dynamic mixed sampling strategy is proposed.
RLagent is optimized by the gradient updating method using
mixed batches of experiences sampled from the population and
RLagent, with dynamic ratio adjustment throughout training.
If RLagent outperforms the worst individual in the population,
the parameters of the actor network of RLagent are synchro-
nized with those of the worst individual.

C. Operator Selection

Our method enhances the overall quality of the population
by selecting suitable EA operators for the two subpopulations
at different performance levels. To adaptively determine the
most suitable operators, the operator selection process is
formulated as a Markov Decision Process (MDP), with an
online PPO algorithm serving as the operator selector. The
workflow for operator selection is shown in Fig. 4. First, the
population is divided into two subpopulations based on the
fitness of individuals, and the fitness values of individuals
in each subpopulation are gathered. Second, metrics such as
average fitness, best fitness, and the fitness difference between

Start and Initialize

End and Return an
optimal actor network

Evaluation / Environment
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Actor 1
Actor 2

…
…

Actor n
RLcritic

RLactor
Policy

Gradient

Mixed
Sample

SynchronizeNew population

Replay Buffer

Inject
Filter

Pop RL

Divide Population
Sub1 Sub2

Operator Selection

Subpop Evolution

Fig. 3. Framework of SERL-OS-EF.

the previous iteration and the current iteration are calculated.
Subsequently, these metrics are analyzed alongside the overall
population data and historical data to assess the performance
level of each subpopulation. Finally, each subpopulation is
assigned the most suitable EA operator by the trained model
according to its performance estimation.

To be specific, the components of the MDP, namely state
space, action space, transition rule, and reward function, are
defined as follows.

State: For the i-th subpopulation in the t-th iteration, its
state is constructed with both its own information and the
information of the entire population so that the operator
selector can make more informed decision-making, i.e. Si

t =
(Ssubi

t , Spop
t ). The first part is the subpopulation information,

which is expressed as Ssubi
t = {FBi

t, FA
i
t, FBD

i
t, FAD

i
t},

where FBi
t and FAi

t denote the best fitness value and the
average fitness value of the i-th subpopulations, respectively.
FBDi

t = FBi
t − FBi

t−1 and FADi
t = FAi

t − FAi
t−1. The

second part is the information of the entire population, which
is expressed as Spop

t = {FBpop
t , FApop

t }, where FBpop
t and

FApop
t represent the best fitness value and the average fitness

value for the whole population. Additionally, each state feature
in Si

t is normalized within the interval [0,1] by the following
equation, taking FBi

t as an example:

Norm(FBi
t) =

FBi
t −min(FBi

t−2:t)

max(FBi
t−2:t)−min(FBi

t−2:t)
(19)

where max(FBi
t−2:t) and min(FBi

t−2:t) denote the maxi-
mum and minimum of FBi over the past three iterations,
respectively.

Action: The action ait is defined as selecting an operator
from a pre-defined set of operators for the i-th subpopulation.
The operator set utilized in our method is placed at the end
of this subsection.

Transition rule: The transition rule will update the current
Si
t to the next state Si

t+1 based on the performed action ait.
In our work, the transition rule is achieved by applying the
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Fig. 4. The workflow of operator selection. t, t− 1, t+ 1 represent the current iteration, the previous iteration, and the next iteration, respectively.

selected operators to the two subpopulations and generating a
new population of the next iteration.

Reward: In existing ERL algorithms, the role of the popula-
tion is often described as generating diverse experiences. How-
ever, diverse but low-return experiences offer limited assis-
tance in the training of ERL algorithms. The population should
be used to generate compatible and diverse experiences for
RLagent. “Compatible” refers to the notion that experiences
generated by individuals in the population should match the
current learning level of RLagent. The experiences generated
by individuals with high fitness will bring more benefits to the
training of RLagent compared to the experiences generated
by the bad individuals. The reward function has a significant
impact on the selection preference of PPO. To generate
more compatible and diverse experiences, each individual in
the population should exhibit good performance while still
maintaining diversity. Therefore, the reward function consists
of two parts: the sum of the best fitness and the average fitness
FBi

t + FAi
t and the difference between them FBi

t − FAi
t:

R = 0.5 ∗ (FBi
t + FAi

t) +
t

T
∗ (FBi

t − FAi
t) (20)

where T is the maximum number of iterations.
In the first part of the reward function FBi

t + FAi
t, both

the best fitness FBi
t and the average fitness FAi

t have equal
significance, which contributes to improving the performance
of each individual, rather than just improving the performance
of elite individuals. The second part of the reward function
FBi

t − FAi
t is designed to indirectly reflect the diversity and

heterogeneity among individuals in the subpopulation. Regard-
ing the diversity of the population, an intuitive measurement
from the phenotype perspective is the standard deviation of
the fitness values of all individuals. For the sake of simplicity,
we use FBi

t − FAi
t as an approximation. In the initial stage

of the algorithm, individuals in the population are randomly
generated. The population is naturally very diverse. At this
time, t is very small, and the second part of (20) does not
play a key role in the reward of operator selection. Along with
the training process, normally the algorithm would converge
and the diversity of the population would gradually decrease.
Hence, the weight of the second part increases as the iteration
progresses (t increases), which makes the algorithm focus

more and more on maintaining the diversity of the population,
contributing to fostering the generation of compatible and
diverse experiences.

Operator Set: In this work, two efficient and safe opera-
tors, namely, opposite-based proximal mutation and gradient
optimization operator, are employed to construct the operator
set.

1) Opposite-based proximal mutation operator. Mutation
typically exhibits significant randomness and is prone to catas-
trophic forgetting. Although proximal mutation [23] mitigates
this issue to some extent by controlling the mutation magni-
tude through sensitivity calculation, it still retains substantial
randomness. Therefore, we further propose the opposite-based
proximal mutation to enhance the robustness and perfor-
mance of mutation by refining the adjustment of the mutation
magnitude. Firstly, we perform a basic mutation operation.
Sensitivity se, which is defined by (21), is utilized to adjust
the Gaussian perturbation of each weight. The sensitivity s
is calculated by the gradient of each dimension of the output
action over NM transitions, which are sampled from the buffer
of individuals.

se =

√√√√ A∑
k

(

NM∑
i

▽θµθ(si)k)2 (21)

θ ← θ +
x

se
(22)

where x ∼ N(0, σI). θ represents the parameters of actor-
network µ. σ represents the mutation magnitude parameter. A
denotes the dimension of the output action.

Secondly, we perform an opposite mutation to adjust the
mutation magnitude further. A scaling factor α is designed to
adaptively adjust the scale of the opposite mutation based on
the performance of the basic mutation.

θ ← θ − α ∗ x
se

α = abs(
Fa

Fb
) (23)
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where the abs() function returns the absolute value of the
number. Fa and Fb are the fitness values before and after the
basic mutation, respectively.

Finally, The fitness of the opposite mutation is compared
with that of the basic mutation. The mutation with better
fitness is adopted.

2) Gradient optimization operator: the critic network of
RLagent is used to train the actor networks of individuals
in the population by the sampled policy gradient. If the
gradient optimization operator is selected, each individual in
the population is subject to a probability 90% of undergoing
100 rounds of gradient training. The probability is the same
as the probability of the proximal mutation in PDERL.

D. Experience Filter

Despite extensive efforts to improve the performance of
all individuals in the population, complete eradication of bad
individuals remains impossible due to the stochasticity of
EAs. To maintain the long-term high quality of the replay
buffer, it is essential to regulate the experiences being injected,
replacing the indiscriminate experience storage mechanism in
the existing ERL algorithms. Inspired by the move-acceptance
strategy [39], [40], the experience filter strategy is proposed
to retain high-quality experiences while discarding low-quality
ones. The core of this mechanism lies in how to evaluate the
quality of experiences. TD-error is used to measure the impor-
tance of each transition in prioritized experience replay [41].
Despite its advantages, the prioritizing experience framework
involves some intricacy. To simplify the complexity and reduce
computational costs, we use a coarse-grained measurement
that the fitness of individuals is established as the criterion
for deciding whether to discard or retain experiences provided
by individuals in the population. It works at a trajectory level
instead of a single experience level.

In the experience filter, the experiences generated by the
population are expected to be compatible with RLagent. If an
individual exhibits a significant gap in fitness to RLagent in
an iteration, all experiences generated by the individual in this
iteration will be discarded. Due to the comparatively lower
stability of RLagent, elite individuals in the population are
employed as substitutes. The pseudocode of the experience
filter is shown in Algorithm 1, where β is a parameter used
to adjust the filtering intensity.

E. Dynamic Mixed Sampling Strategy

Experience collection and utilization are crucial to RL,
and an efficient experience replay strategy can significantly
enhance the learning efficiency and overall performance of the
algorithm [42]. In existing ERL algorithms, the experiences
generated by the population and RLagent are merged into
the same shared replay buffer, associated with a uniform ran-
dom sampling strategy for the gradient-based optimization of
RLagent training. However, there is an experience distribution
mismatch between the experiences generated by the population
and RLagent [30]. To address this issue, a dynamic mixed
sampling strategy is proposed. The experiences generated by

Algorithm 1 Experience Filter
Input: Population size N , the fitness values of population

Fi, i = 1, 2, ...N , the best fitness value of the population
BF , filter parameter β, the trajectories of all individuals in
the population, the replay buffer of the population RBpop;

1: for i = 1→ N do
2: if BF > 0&Fi > BF ∗ (1− β), 0 < β then
3: the trajectory from individual i is added to RBpop;
4: else
5: the trajectory from individual i is discarded;
6: end if
7: if BF < 0&Fi > BF ∗ (1 + β) then
8: the trajectory from individual i is added to RBpop;
9: else

10: the trajectory from individual i is discarded;
11: end if
12: end for
13: return ;

the population and RLagent are stored separately in different
replay buffers, and one batch is generated according to:

d̂(s, a) = m ∗ dDrl
(s, a) + (1−m) ∗ dDpop

(s, a) (24)

where dDrl
(s, a) and dDpop(s, a) are batches separately sam-

pled from the buffers of RLagent and the population. d̂(s, a) is
a mixed final batch. m represents the proportion of experiences
sampled from the buffers of RLagent.

Due to the implementation of the experience filter, the com-
patible and diverse experiences generated by the population
will contribute positively to the learning efficiency of RLagent.
However, sampling too many population experiences may
introduce instability to the learning of RLagent. In the early
stages, more experiences should be sampled from the buffer
of RLagent, which contributes to the rapid and stable learning
of RLagent. In the later stages, the diverse experiences in
the buffer of the population benefit the further enhancement
of RLagent. Therefore, a linearly decreasing ratio is used
to balance the experience proportion from RLagent and the
population:

m = k ∗ (1− t

T
) (25)

where k is a hyperparameter.

IV. EXPERIMENTAL STUDY

In this section, we provide details of the experimental setup
in the first place. Then, the components of SERL-OS-EF
including operator selection, experience filter, and dynamic
mixed sampling strategy are validated and tuned in four
MoJoCo environments. Finally, the effectiveness, efficiency,
and practical significance of SERL-OS-EF are evaluated in
four MuJoCo environments, three Ant-Maze environments
with deceptive rewards, and a practical task.
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(d) Ant-v4(c) Walker2D-v4(b) Hopper-v4(a) HalfCheetah-v4

PDERL

ERL-OS

Fig. 5. The comparison between PDERL (top row) and ERL-OS (bottom row) regarding the quality of individuals in the population.

A. Experimental Setup

To mitigate the critical overestimation issue in the RL part,
TD3 is adopted as the RLagent in our algorithm SERL-OS-EF.
For a fair comparison, PDERL also replaces DDPG with TD3.
The original network parameters of TD3 are used in SERL-
OS-EF and PDERL. The parameter settings of our method are
present in Table III and IV.

TABLE III
PARAMETER SETTING

Parameter Value Ref

The parameter of TD3 default setting [43]
The size of population buffer and RLagent buffer 50,000 [30]
The size of indivudual buffer in population 8,000 [23]
The size of population 10 [18], [23]
The number of elite individuals 2 [18], [23]
The Mutation magnitude parameter σ 0.01 [23]
The batch size NM 256 [23]
The scaling factor α 1.5 Ours
The parameter of filter β 0.25 Ours
The parameter of dynamic mixed sampling k 0.2 Ours

TABLE IV
PPO PARAMETER SETTINGS

Hyperparameter Value

Actor network FC(64,32)
Actor activate function ReLU
Critic network FC(64,32)
Critic activate function ReLU
Optimizer Adam
Discount factor 0.99
Clip range 0.2
Learning rate 3 · 10−4

Advantage estimation parameter 0.95
Number of training epochs per update 4
Batch size 5
Number of steps per update 20

B. Investigation of Operator Selection

1) Visualization of Individual Quality: To validate the ef-
fectiveness of the proposed operator selection strategy, we

simplify our algorithm and keep only the operator selection
part. The simplified version is denoted as ERL-OS. First, we
demonstrate that ERL-OS can generate more beneficial expe-
riences by conducting the same experiment we have done on
PDERL with the same random seeds. The results on ERL-OS
are shown in Fig. 5, compared with PDERL. It is observed that
the performance of individuals in ERL-OS greatly outperforms
that of PDERL. In the population of ERL-OS, the type of bad
individual (green curves) has disappeared in all environments.
The number of elite individuals in the population has grown,
and the fluctuations of unstable individuals are more subdued
compared to those in PDERL, especially in HalfCheetah.
Meanwhile, the noticeable gap between the worst and elite
individuals has decreased in ERL-OS, which leads to superior
experiences being injected into the replay buffer. Hence, there
is a notable improvement in the final performance and stability
of RLagent in all environments. The results indicate that
the proposed ERL-OS effectively enhances the quality of
population experiences and the learning of RLagent benefits
from these experiences.

2) Comparison with only one operator: To further figur out
whether the selection strategy is useful or only the proposed
mutation operator is useful, we designed two other ERL
algorithms, GERL and OPERL, using only the gradient op-
timization operator and the opposite-based proximal mutation
operator, respectively. ERL-OS is compared with them. Mean-
while, to investigate the relationship between the performance
of RLagent and ERL algorithms, the learning curves of three
ERL algorithms (solid line) and their corresponding RLagent

(dashed line) are illustrated in Fig. 6. From a holistic perspec-
tive, ERL-OS consistently outperforms GERL and OPERL
throughout the entire iteration process, indicating the beneficial
impact of operator selection on enhancing the performance of
ERL-OS.

In the previous comparison, we have witnessed the impact
of population on RLagent. Here, we will further analyze the
influence of RLagent on the ERL algorithms. These analyses
aim to offer a comprehensive understanding of the symbiotic



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

relationship between evolution and learning. As shown in Fig.
6, the performance of RLagent shows a positive correlation
with the algorithm’s effectiveness. The better the performance
of RLagent, the better the performance of ERL algorithms.
RLagent contributes to an ERL algorithm in two ways. The
first way involves directly boosting the algorithmic perfor-
mance, where the current performance of RLagent surpasses
the historical best value of the algorithm. In the initial to
middle phases of HalfCheetah, the curves of ERL algorithms
closely follow those of RLagent, indicating that RLagent

directly enhances the performance of ERL algorithms through
synchronization. The actor network of RLagent is synchro-
nized to the population and retained as an elite individual.
Another way is to indirectly improve the performance of
the ERL algorithms, where RLagent provides a promising
exploration space for population evolution. In most cases, the
second way is more prevalent. In the early stages of Hopper
and Walker2D, the performance improvement of RLagent in
ERL-OS is faster than that in GERL and OPERL, leading
to superior convergence speed in ERL-OS. In the later stage
of HalfCheetah and the middle to late stage of Ant, better
RLagent contributes to ERL-OS achieving better performance.

Table V reports the final performance (Mean±Std.) of
OPERL, GERL, and ERL-OS. The result with the highest
mean value is shown in bold. Combining Fig. 6 and Table V,
it is evident that ERL-OS not only converges faster than the
other two algorithms but also outperforms them significantly
in the final performance. The experimental results from Fig.
5 and Fig. 6 demonstrate that the operator selection strategy
contributes to elevating the quality of population experiences,
which facilitates the improvement of RLagent. The improved
RLagent will further enhance the efficiency of the population,
which propels ERL-OS into a positive feedback loop. Ulti-
mately, the overall performance of ERL-OS is improved.

TABLE V
THE FINAL PERFORMANCE (MEAN±STD.) OF OPERL, GERL, AND

ERL-OS

Algorithm HalfCheetah Hopper Walker2D Ant

OPERL 13881±754 3709±60 5230±477 5648±763
GERL 13714±415 3749±64 5183±434 5565±715

ERL-OS 14988±868 3765±30 5540±371 6207±755

C. Investigation of Experience Filter and Dynamic Mixed
Sampling Strategy

In the experience filter and dynamic mixed sampling strate-
gies, there are two key parameters: filtering parameter β
and mixed sampling parameter k. We employed a controlled
variable method to evaluate their influence on SERL-OS-EF
independently. Firstly, β is set to 0.25, while k = 0.3, 0.2, 0.1.
The learning curves of ERL-OS and SERL-OS-EF with dif-
ferent values of k are shown in Fig. 7. The final performance
is presented in Table VI. The result with the highest mean
value is highlighted. The larger the value of k, the more
experiences are sampled from the buffer of RLagent, and
the fewer experiences are sampled from the buffer of the
population.

(a) HalfCheetah-v4

(b) Hopper-v4

(d) Ant-v4

(c) Walker2D-v4

Fig. 6. The learning curves (solid line) of GERL, OPERL, and ERL-OS
during the evolutionary process. The learning curves of the RLagent are
drawn by dash lines with the same color
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(a) HalfCheetah-v4 (b) Hopper-v4

(d) Ant-v4(c) Walker2D-v4

Fig. 7. the learning curves of ERL-OS and SERL-OS-EF with different value
of k.

TABLE VI
THE FINAL PERFORMANCE (MEAN±STD.) OF ERL-OS AND

SERL-OS-EF WITH DIFFERENT VALUE OF k.

Algorithm HalfCheetah Hopper Walker2D Ant

ERL-OS 14988±868 3765±30 5540±371 6207±755
SERL-OS-EF 14766±1159 3820±60 5206±331 6666±727
k = 0.3

SERL-OS-EF 15610±584 3825±151 5736±173 6500±542
k = 0.2

SERL-OS-EF 15388±991 3790±79 5227±396 5533±542
k = 0.1

As shown in Fig. 7, in the early stages of HalfCheetah and
Hopper, the differences among SERL-OS-EF with varying k
values are minimal, yet all demonstrate superior performance
compared to ERL-OS. In Walker2D and Ant, ERL-OS shows a
faster convergence speed initially, but SERL-OS-EF(k = 0.2)
catches up eventually and SERL-OS-EF(k = 0.3) achieves
the best final performance. The results suggest that different
values of k have varying effects on SERL-OS-EF in different
environments. According to Fig. 7 and Table VI, a large value
of k is advantageous for Hopper and Ant. A small value
of k is beneficial for HalfCheetah. However, both maximum
and minimum values of k result in decreased performance of
SERL-OS-EF. Hence, there is a trade-off regarding the setting
of k. In terms of final performance, SEH-OS-EF(k = 0.2)
ranks first on three out of four environments and ranks second
in Ant. Hence, the k = 0.2 is chosen as the default parameter.

Secondly, to evaluate the influence of β on the SERL-OS-
EF, k is set to 0.2, while β = 0.75, 0.5, 0.25. The learning
curves of ERL-OS and SERL-OS-EF with different values of
β are plotted in Fig. 8. The final performance is listed in Table
VII. The results with the highest mean values are highlighted.
The β denotes the tolerance level of the experience filter to-
wards experiences generated by subpar individuals. A smaller
value of β indicates a smaller tolerance threshold, which will
filter out more low-quality experiences.

As shown in Fig. 8, in the early stage of HalfCheetah,

(a) HalfCheetah-v4 (b) Hopper-v4

(d) Ant-v4(c) Walker2D-v4

Fig. 8. The learning curves of ERL-OS and SERL-OS-EF with different value
of β.

TABLE VII
THE FINAL PERFORMANCE (MEAN±STD.) OF ERL-OS AND

SERL-OS-EF WITH DIFFERENT VALUE OF β .

Algorithm HalfCheetah Hopper Walker2D Ant

ERL-OS 14988±868 3765±30 5540±371 6207±755
SERL-OS-EF 15610±584 3825±151 5736±173 6500±542
β = 0.25

SERL-OS-EF 15521±317 3749±26 5689±292 6487±628
β = 0.5

SERL-OS-EF 14769±841 3751±13 5473±393 5691±708
β = 0.75

the learning curves of SERL-OS-EF(β = 0.75) and SERL-
OS-EF(β = 0.5) are nearly overlapped. This phenomenon
stems from the minor discrepancies among individuals in
the population. There are no individuals that are significantly
inferior to the best one. Consequently, the experience filters
of SERL-OS-EF(β = 0.75) and SERL-OS-EF(β = 0.5)
remain inactive. In the early stages of Walker2D and Ant,
the convergence speed of SERL-OS-EF(β = 0.25) is lower
than that of ERL-OS, indicating that filtering out too many
low-reward experiences may have a negative impact on SERL-
OS-EF. In the mid to later stages of Walker2D and Ant, the
performance of ERL-OS shows a slow improvement, while
the SERL-OS-EF(β = 0.25) exhibits a notable and consistent
enhancement during the same period. SERL-OS-EF(β = 0.25)
achieves the best final performance in all environments, as
presented in Table VII. Hence, β = 0.25 is selected as
the default parameter. To sum up, the default parameters for
SERL-OS-EF are as follows: k = 0.2, β = 0.25.

D. SERL-OS-EF Evaluation

To evaluate the overall performance of the proposed SERL-
OS-EF, we compare it with three DRL algorithms, namely
DDPG, TD3, and SAC, and six state-of-the-art ERL algo-
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TABLE VIII
THE FINAL PERFORMANCE (MEAN±STD.(RANK)) OF ALL ALGORITHMS

ON MUJOCO ENVIRONMENTS.

Algorithm HalfCheetah Hopper Walker2D Ant Rank

DDPG 11766±335(9) 1948±512(10) 3172±1346(10) -538±1190(10) 9.75
TD3 14631±816(3) 3620±111(5) 4762±494(8) 5847±975(4) 5
SAC 13948±871(6) 2813±875(8) 5300±660(5) 5793±754(5) 6

CEM-RL 11143±730(10) 3655±155(4) 4787±681(7) 5573±816(6) 6.75
NERL 14394±1302(4) 3671±73(3) 4084±1371(9) 4037±2391(8) 6

PDERL 12436±261(8) 3708±50(2) 5073±427(6) 4800±549(7) 5.75
ERLTD 15390±660(2) 2617±1194(9) 5567±177(3) 7392±284(1) 3.75
CoERL 14369±617(5) 3090±474(7) 5456±346(4) 1109±3429(9) 6.25

EvoRainbow 12989±1871(7) 3278±439(6) 5748±281(1) 6967±297(2) 4
SERL-OS-EF 15610±584(1) 3825±151(1) 5736±173(2) 6500±542(3) 1.75

rithms, namely CEM-RL1, NERL2, PDERL3, ERL-TD4, Co-
ERL5, and EvoRainbow [44] 6 on four MuJoCo environments
and three Ant-Maze environments with deceptive rewards 7.
For a fair comparison, the proximal mutation in PDERL has
been replaced by the opposite-based proximal mutation and
the synchronization aligns with that of SERL-OS-EF.

1) MuJoCo environments: HalfCheetah, Hopper, Walker2D,
and Ant environments involve controlling different types of
physical agents and are widely used benchmarks for evaluating
reinforcement learning algorithms. The learning curves are
illustrated in Fig. 9. The final results are presented in Table
VIII. Table VIII shows that the SERL-OS-EF achieved the
best average rank among all methods in four environments,
demonstrating its superior effectiveness. In HalfCheetah and
Walker2D, some algorithms initially converge faster than
SERL-OS-EF, but their convergence rate has shown a decel-
erating trend, suggesting that they may have converged to a
local optimum. However, SERL-OS-EF maintains a stable and
faster convergence rate in the middle to late stages. Ultimately,
SERL-OS-EF catches up with other algorithms in Walker-
2D and outperforms them in HalfCheetah. In Hopper, SERL-
OS-EF consistently shows superior performance compared to
other algorithms. Although reaching a local optimum similar
to other algorithms in the mid-term, SERL-OS-EF continues
to make further improvements in the later stages. In Ant, ERL-
TD significantly outperformed other algorithms, primarily due
to the use of multiple critic networks and a truncated variance
strategy to mitigate overestimation bias. However, ERL-TD
incurs significantly higher computational costs. As shown in
Table IX, its runtime of training 10,000 steps in the four Mu-
JoCo environments is quadruple that of our algorithm. CoERL
converges quickly in the early stages but shows significant
performance drops in the later stages of Ant, revealing the risk
of evolving the actor network of RLagent through cooperative
coevolution. Although EvoRainbow performed well in the
early stages across all four environments, its performance
declined in the later stages on HalfCheetah and Hopper, and
its computational cost was over twice that of ours.

1https://github.com/apourchot/CEM-RL.
2https://github.com/cugqiaorui/nerl.
3https://github.com/crisbodnar/pderl.
4https://github.com/2019cyf/ERL-TD
5https://github.com/HcPlu/CoERL
6https://github.com/yeshenpy/EvoRainbow
7https://github.com/Farama-Foundation/Gymnasium-Robotics?tab=readme-

ov-file

(a) HalfCheetah-v4

(b) Hopper-v4

(d) Ant-v4

(c) Walker2D-v4

Fig. 9. Learning curves of all algorithms on MuJoCo environments.
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TABLE IX
RUNTIME (IN SECONDS) OF TRAINING 10,000 STEPS ON MUJOCO

ENVIRONMENTS.

Algorithm HalfCheetah Hopper Walker2D Ant

DDPG 169.71 170.23 170.36 177.91
TD3 140.68 143.10 141.96 146.10
SAC 381.83 385.00 399.16 404.74

CEM-RL 340.45 298.94 336.93 354.19
NERL 335.05 357.71 313.41 351.47

PDERL 196.85 158.89 176.81 182.81
ERL-TD 935.84 910.57 1278.32 977.47
CoERL 403.40 396.69 434.29 342.69

EvoRainbow 557.42 593.79 558.88 580.94
SERL-OS-EF 188.66 229.38 232.57 224.41

2) Ant-Maze environments with deceptive rewards: This
benchmark contains three environments, Ant-UMaze, Ant-
MediumMaze, and Ant-LargeMaze. The complexity of the
three maze environments increases in succession. These en-
vironments aim to guide an ant agent through the maze to
reach the target point. The reward signal is deceptive, defined
as the negative Euclidean distance between the ant and the
target point, with a negative exponential function applied to
calculate the reward value. The closer the ant is to the target
point, the higher the reward. The simultaneous demands of
navigation and movement control make this reward signal
prone to causing collisions or getting the ant stuck.

Table X presents the Mean(Maximum, Median) values
across 5 seeds for all algorithms. DRL algorithms such as
DDPG, TD3, and SAC exhibit poor performance in decep-
tive environments. This is primarily due to their insuffi-
cient exploration capability, making it challenging for them
to effectively learn from deceptive rewards. Both ERL-TD
and CoERL show poor performance, primarily due to their
compromise on exploration. ERL-TD emphasizes improving
the RL component, while CoERL optimizes the same actor
network for both the EA and RL components. Consequently,
both algorithms reduce the exploration ability of EA compo-
nents, which is the key reason for their poor performance.
Although EvoRainbow integrates five different mechanisms,
it still underperforms in complex maze environments. CEM-
RL achieves promising results on some seeds in the Ant-
UMaze. However, its median values drop to zero in the Ant-
MediumMaze and Ant-LargeMaze, indicating a significant
lack of learning capability under more complex maze envi-
ronments. PDERL demonstrates relatively strong performance
in Ant-UMaze and Ant-MediumMaze. However, its median
also drops to 0 in Ant-LargeMaze, indicating a significant
decline in performance. Our method places greater emphasis
on the quality of the population and the synergy between the
EA and RL components, rather than solely enhancing one
side’s capability. As a result, it effectively balances exploration
and exploitation. SERL-OS-EF algorithm achieves the best
performance and demonstrates greater stability in performance
across all Ant-Maze environments, highlighting the effective-
ness of our method.

TABLE X
THE PERFORMANCE (MEAN(MAXIMUM, MEDIAN)) OF ALL ALGORITHMS

ON ANT-MAZE ENVIRONMENTS.

Algorithm Ant-UMaze Ant-MediumMaze Ant-LargeMaze

DDPG 3.09(14.71, 0.24) 0.51(1.99, 0) 1.32(6.58, 0)
TD3 38.86(190.91, 0.77) 4.44(16.35, 0) 16.61(83.05, 0)
SAC 2.95(13.95, 0.30) 0.53(2.02, 0) 1.52(7.58, 0)

CEM-RL 109.17(209.07, 152.63) 6.75(25.08, 0) 30.90(154.52, 0)
NERL 34.26(90.25, 34.13) 6.26(13.60, 4.34) 23.45(117.25, 0)

PDERL 270.42(387.36, 329.89) 163.55(507.43, 108.55) 132.84(665.07, 0)
ERL-TD 64.91(203.47, 51.68) 19.69(84.01, 0.01) 53.30(266.51, 0)
CoERL 2.85(13.45, 0.30) 0.51(1.99, 0) 1.35(6.75, 0)

EvoRainbow 21.06(60.23, 6.95) 18.30(60.32, 0.04) 26.51(132.55, 0)
SERL-OS-EF 393.21(583.93, 410.96) 320.81(586.17, 240.93) 267.85(775.23, 181,31)

E. Low-carbon Multi-energy Microgrid Energy Management
Task

To demonstrate the practical applicability of the proposed
method, we test SERL-OS-EF on a low-carbon multi-energy
microgrid energy management task [45]. The efficient de-
ployment of renewable energy in power systems is a key
strategy for achieving carbon peaking and neutrality, as well
as mitigating the environmental and carbon emission pressures
caused by fossil energy. A multi-energy microgrid (MEMG)
system is a small-scale energy system that combines various
distributed energy resources, including combined heat and
power, gas boiler, electric energy system, thermal energy
system, renewable energy resources like photovoltaic and wind
turbines, along with numerous flexible loads. Optimally sched-
uled multi-energy flows in MEMG are desirable to reduce
system costs and carbon emissions. To reduce overall system-
wide carbon emissions and promote the adoption of renewable
energy, carbon emission trading, integral carbon price model,
and green certificate market mechanisms are introduced in
[45]. Meanwhile, to address the challenges of dynamism,
uncertainty, and scalability in MEMG systems, [45] models the
task as a Markov Decision Process using the publicly available
dataset. Specifically, the electric and photovoltaic profiles are
sourced from the Ausgrid dataset [46], while the thermal load
profile is obtained from the dataset provided in [47]. The entire
dataset is available at an hourly granularity for a full year and
divided into training and testing sets. For each month, the
first 20 days are used for training and the rest for testing,
resulting in 240 training days and 125 testing days annually.
For consistency, the experimental setup is aligned with those
presented in [45], to which the reader is referred for further
information.

A two-step diffusion policy TD3 (T2D4) algorithm is
proposed in [45], which is the state-of-the-art RL algorithm
for low-carbon multi-energy microgrid energy management
task. T2D4 combines TD3 with a diffusion model, which is
used to fit the true distribution of history data under various
uncertainties. In addition to T2D4, we also include TD3,
PDERL, CoERL and ERL-TD as the benchmark algorithms
for comparison. All algorithms are trained for 20,000 episodes
(aligned with the setup in [45]) on the training dataset and
subsequently evaluated on the testing dataset. The accumulated
cost and carbon emission over test days is plotted in Fig.
10. The comparison results are shown in Table XI. PDERL
and ERL-TD demonstrate superior performance over TD3 in
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reducing both cost and carbon emissions, although they do
not outperform T2D4. Moreover, ERL-TD exhibits the lowest
variance, indicating superior stability. In contrast, CoERL
shows slightly lower performance than TD3, possibly due to
the limitations of its cooperative coevolution mechanism under
more complex practical task. SERL-OS-EF achieves the lowest
cumulative cost and carbon emissions among all methods.
Specifically, SERL-OS-EF achieves 30.20%–47.66% lower
costs and 0.13%–15.35% lower carbon emissions compared
to the other algorithms. Overall, the experimental results
demonstrated the efficacy and practicality of our method in
the practical task.

(a) Cost (b) Carbon emission

Fig. 10. The cumulative cost and carbon emission of the whole test days.
The lower the better.

TABLE XI
COMPARISON ON THE MEMG TASK.

Algorithm Cost(thous.$) Carbon emission(ton)

TD3 516.26±108.75 6478.54±555.41
T2D4 387.73±247.58 5987.44±53.16

PDERL 412.59±76.18 6279.51±174.26
CoERL 517.14±153.68 7064.44±739.17
ERL-TD 472.90±8.94 6182.24±12.95

SERL-OS-EF 270.65±80.59 5979.91±115.63

V. CONCLUSION

The goal of this paper is to reveal the issues in the
process of experience generation and utilization in ERL and to
enhance the performance of ERL by addressing them. Through
analyzing the quality differences among individuals during
the evolutionary process, we have successfully identified the
issue as the conflict of objectives between population evolution
in EA and ERL. To address this issue, SERL-OS-EF was
proposed to enhance the synergy by improving the quality of
the shared replay buffer and maximizing its utility. Firstly,
the operator selection strategy was proposed to boost the
production of compatible and diverse individuals, fundamen-
tally improving the quality of experiences flowing into the
replay buffer. Secondly, an experience filter was proposed
to filter out the experiences generated by poor individuals,
which facilitates the maintenance of a long-term high-quality
replay buffer. Finally, a dynamic mixed sampling strategy is
introduced to enhance the efficiency of RLagent in learning
from the buffer, thereby improving overall synergy efficiency.
The superiority of SERL-OS-EF is demonstrated through four
MuJoCo environments, three Ant-Maze environments with

deceptive rewards, and a low-carbon multi-energy microgrid
energy management task.

In future works, there are three directions in which we will
continue our research on ERL. First, we will delve deeper
into the synergy between the EA and RL components in ERL
algorithms. Second, we aim to enhance the performance and
robustness of ERL algorithms in environments with deceptive
rewards. Finally, we will apply ERL algorithms to more real-
world applications like vehicle routing problems and multi-
agent systems.
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[23] C. Bodnar, B. Day, and P. Lió, “Proximal distilled evolutionary rein-
forcement learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, 2020, pp. 3283–3290.

[24] Q. Lin, Y. Chen, L. Ma, W.-N. Chen, and J. Li, “Erl-td: Evolutionary
reinforcement learning enhanced with truncated variance and distillation
mutation,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 38, no. 12, 2024, pp. 13 826–13 836.

[25] A. Pourchot and O. Sigaud, “Cem-rl: Combining evolutionary
and gradient-based methods for policy search,” arXiv preprint
arXiv:1810.01222, 2018.

[26] C. Hu, R. Qiao, W. Gong, X. Yan, and L. Wang, “A novelty-search-based
evolutionary reinforcement learning algorithm for continuous optimiza-
tion problems,” Memetic Computing, vol. 14, no. 4, pp. 451–460, 2022.

[27] P. Li, H. Tang, J. Hao, Y. Zheng, X. Fu, and Z. Meng, “ERL-Re2:
Efficient evolutionary reinforcement learning with shared state represen-
tation and individual policy representation,” in International Conference
on Learning Representations, 2023.

[28] C. Hu, J. Liu, and X. Yao, “Evolutionary reinforcement learning via co-
operative coevolution,” in European Conference on Artificial Intelligence,
2024.

[29] E. Marchesini, D. Corsi, and A. Farinelli, “Genetic soft updates for pol-
icy evolution in deep reinforcement learning,” in International Conference
on Learning Representations, 2020.

[30] B. Zheng and R. Cheng, “Rethinking population-assisted off-policy
reinforcement learning,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2023, pp. 624–632.

[31] O. Sigaud, “Combining evolution and deep reinforcement learning for
policy search: a survey,” ACM Transactions on Evolutionary Learning,
vol. 3, no. 3, pp. 1–20, 2023.

[32] S. Chang, J. Yang, J. Choi, and N. Kwak, “Genetic-gated networks for
deep reinforcement learning,” Advances in neural information processing
systems, vol. 31, 2018.

[33] R. Houthooft, Y. Chen, P. Isola, B. Stadie, F. Wolski, O. Jonathan Ho,
and P. Abbeel, “Evolved policy gradients,” Advances in Neural Informa-
tion Processing Systems, vol. 31, 2018.

[34] R. Rubinstein, “The cross-entropy method for combinatorial and contin-
uous optimization,” Methodology and computing in applied probability,
vol. 1, pp. 127–190, 1999.

[35] H. T. Nguyen, K. Tran, and N. H. Luong, “Combining soft-actor critic
with cross-entropy method for policy search in continuous control,” in
2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022,
pp. 1–8.

[36] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018,
pp. 1861–1870.

[37] Y. Tang, “Guiding evolutionary strategies with off-policy actor-critic.”
in AAMAS, 2021, pp. 1317–1325.

[38] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.
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