
IEEE TRANSACTIONS ON CYBERNETICS 1

Contribution-based Cooperative Co-evolution for
Non-separable Large-scale Problems with

Overlapping Subcomponents
Ya-Hui Jia, Yi Mei, Senior Member, IEEE, and Mengjie Zhang, Fellow, IEEE

Abstract—Cooperative co-evolutionary algorithms have ad-
dressed many large-scale problems successfully, but the non-
separable large-scale problems with overlapping subcomponents
are still a serious difficulty that has not been conquered yet.
First, the existence of shared variables makes the problem hard
to be decomposed. Second, existing cooperative co-evolutionary
frameworks usually cannot maintain the two crucial factors,
high cooperation frequency and effective computing resource
allocation, simultaneously when optimizing the overlapping sub-
components. Aiming at these two issues, this paper proposes a
new contribution-based cooperative co-evolutionary algorithm to
decompose and optimize the non-separable large-scale problems
with overlapping subcomponents effectively and efficiently. 1) A
contribution-based decomposition method is proposed to assign
the shared variables. Among all the subcomponents containing
a shared variable, the one that contributes the most to the
whole problem will include the shared variable. 2) To achieve the
two crucial factors at the same time, a new contribution-based
optimization framework is designed to award the important sub-
components based on the round-robin structure. Experimental
studies show that the proposed algorithm performs significantly
better than the state-of-the-art algorithms due to the effective
grouping structure generated by the proposed decomposition
method and the fast optimizing speed provided by the new
optimization framework.

Index Terms—Cooperative Co-evolution, Evolution Strat-
egy, Large-Scale Global Optimization, Overlapping Problem,
Contribution-based Optimization

I. INTRODUCTION

LARGE-SCALE global optimization (LSGO) is one of the
most challenging problems in evolutionary computation

(EC) [1], [2]. When the dimension of the problem grows,
not only mathematical optimization methods but also tradi-
tional evolutionary algorithms (EAs) suffer from the curse of
dimensionality [3]. To handle the complexity of large-scale
problems and promote the usage of EC, scholars proposed
many algorithms following two different directions. The first
direction is considered from the algorithm perspective. Schol-
ars tried to increase either the EAs’ exploration abilities by
designing new learning strategies [4], [5] or their exploitation
abilities by incorporating local search algorithms [6], [7]. The
second direction is considered from the problem perspective
that the cooperative co-evolution (CC) scheme [8]–[10] is
adopted. Based on the idea of divide-and-conquer, cooperative
co-evolutionary algorithms (CCEAs) optimize a large-scale

Ya-Hui Jia, Yi Mei, and Mengjie Zhang are with School of Engineering
and Computer Science, Victoria University of Wellington, Wellington, New
Zealand.

problem by decomposing it into small subcomponents and then
solving these subcomponents collaboratively.

Numerous CCEAs have been proposed [1], [2], [11]–[21]
and applied to real-world applications [22]–[28] since the first
CCEA, namely CC genetic algorithm, was created by Potter
and Jong [29]. A CCEA usually consists of a grouping method,
a.k.a. decomposition or partition, to decompose problems and
an EA to optimize the subcomponents.

Concerning the grouping method, at the beginning of CC
development, fixed and random grouping methods were widely
applied [17], [30]–[33]. However, their performance is not
very good. Later on, several learning-based grouping methods
were proposed based on different interdependence detecting
techniques, such as CC with variable interaction learning [11],
differential grouping (DG) [12], extended DG [34], global
DG (GDG) [13], DG2 [14], and recursive DG (RDG) [15],
[35], [36]. The essential idea of these methods is to gather
interdependent variables into the same group and separate
independent variables into different groups. These grouping
methods have largely improved the performance of CC on
LSGO problems. However, most CCEAs using learning-based
grouping methods require the problem to be at least partially
separable. When the problem is naturally non-separable, these
algorithms usually cannot provide satisfactory results.

Non-separable large-scale problems with overlapping sub-
components (i.e. overlapping problem) widely exist in real-
world applications [37]–[39]. In an overlapping problem,
the interdependence among variables shows an overlapping
topology that within a subcomponent, the variables strongly
interact with each other. Subcomponents are connected by a
few shared variables. GDG and DG2 cannot divide an overlap-
ping problem into subcomponents since they use a depth-first
search or breadth-first search method on the graph of variable
interdependence to decompose problems. DG and RDG use a
greedy decomposition scheme to assign the shared variables
randomly to one of the subcomponents that interact with them.
Although an overlapping problem can be decomposed into
subcomponents in this way, the generated partition may not
be the most effective one for the optimization process. Some
parallel CC methods duplicate the shared variables in related
subcomponents and select their values through competition,
such as distributed CC [40], factored evolutionary algorithm
(FEA) [41], and competitive-cooperative co-evolution [42],
[43], However, their performance is usually not as competitive
as the serial CC methods under limited computing resources
[19], [40].

IEEE TRANSACTIONS ON CYBERNETICS 2

Regarding the optimization process, the traditional round-
robin (RR) optimization structure of CC treats all subcompo-
nents equally, but different subcomponents may have different
levels of importance to the whole problem. To make the
most of the computing resources, several new CC frameworks
have been proposed. Omidvar et al. [44]–[46] proposed three
contribution-based CC frameworks, CBCC1, CBCC2, and
CBCC3. Inspired by CBCC1, Trunfio [47] proposed a CCEA
called CCAOI. Yang et al. [48] and De Rainville et al.
[49] proposed CCFR and CCEA-MAB respectively in which
the subcomponent that has the largest contribution will be
chosen to evolve. These new CC frameworks have a good
performance on separable problems. However, on overlapping
problems, they may be defeated by traditional CC [36] since
the contribution of a subcomponent may be affected by other
subcomponents due to the existence of shared variables. Zhang
et al. [50] proposed a dynamic CC (DCC) to solve overlapping
problems, but the contribution is accumulated for each variable
which usually leads to poor performance [46], [48].

Reviewing the existing CCEAs, we can find two main
drawbacks of them when they are used to solve large-scale
overlapping problems:

• The existing decomposition methods cannot generate
effective groupings on large-scale overlapping problems.

• The existing optimization methods or frameworks cannot
optimize the overlapping subcomponents effectively.

Goal: To address these two drawbacks, in this paper we pro-
pose a new cooperative co-evolution algorithm called CBCCO
to solve the large-scale overlapping problems. Corresponding
to addressing the two drawbacks, the main contributions of
CBCCO are shown in two aspects:

• From the perspective of decomposition of CBCCO,
a contribution-based decomposition (CBD) method for
overlapping problems is proposed. By designing a graphic
decomposition method and setting a shared variable al-
location stage, CBD assigns the shared variables to the
subcomponents that have larger contributions.

• From the perspective of optimization of CBCCO, a new
contribution-based optimization (CBO) framework is pro-
posed for the overlapping problems. By designing a new
awarding scheme that awards a group subcomponents
each time, CBD can allocate the computing resources
effectively and maintain a high cooperation frequency
among the optimizers.

Through careful orchestration of CBD and CBO, the resul-
tant algorithm CBCCO is compared with seven state-of-the-art
EAs for LSGO problems, including the winners of CEC2018
and CEC2019 LSGO competitions. Moreover, further analyses
about CBO and CBD are also made to gain insights into the
reasons that CBCCO is better than the compared algorithms
on the large-scale overlapping problems.

The rest of this paper is organized as follows. First, back-
grounds including the definition of the overlapping problem
and the related CC works are introduced in Section II.
Afterward, Section III demonstrates the proposed algorithm
CBCCO in detail. Experiments are set up and conducted in

Section IV and Section V, respectively. Finally, the conclusions
are drawn in Section VI.

II. BACKGROUND

A. Large-scale Problem with Overlapping Subcomponents

The definition of the overlapping problem is built based
on variable interdependence. According to DG [12], variable
interdependence is defined by differential relationships.

Definition 1 (Explicit Interaction). Given a n-dimensional
function f(x), x = (x1, x2, . . . , xn), n ≥ 2, xi and xj
(1 ≤ i < j ≤ n) are said to explicitly interact (xi ↔ xj)
with each other, if and only if:

∃(a, b), ∂f

∂xi∂xj
|xi=a,xj=b 6= 0 (1)

Definition 2 (Implicit Interaction). Given a n-dimensional
function f(x), x = (x1, x2, . . . , xn), n ≥ 3, denoting the
set of all variables as Θ, xi and xj (1 ≤ i < j ≤ n)
are said to implicitly interact with each other, if and only if
they do not explicitly interact with each other, and there is a
subset Θ′ ⊂ Θ, Θ′ = {x′1, x′2, . . . , x′n′}, 0 < n′ ≤ n − 2,
xi ↔ x′1 ↔ · · · ↔ x′n′ ↔ xj .

Definition 3 (Independence). Given a n-dimensional function
f(x), x = (x1, x2, . . . , xn), n ≥ 2, xi and xj (1 ≤ i < j ≤ n)
are said to be independent of each other, if and only if they
neither explicitly nor implicitly interact with each other.

According to these three definitions, we can roughly classify
LSGO problems into two types: non-separable and separable.

Definition 4 (Non-separable). A function f(x1, x2, . . . , xn) is
non-separable if ∀i, j ∈ {1, 2, . . . , n}, xi and xj explicitly or
implicitly interact with each other.

Definition 5 (Separable). A function f(x1, x2, . . . , xn) is
separable if ∃i, j ∈ {1, 2, . . . , n}, i 6= j, xi and xj are
independent of each other.

Taking variable as node, explicit interaction as edge, the
interdependence between every pair of variables can be repre-
sented by a graph. Four examples are shown in Fig. 1. Fig. 1(a)
and Fig. 1(b) show two separable functions. Fig. 1(b) shows a
totally separable function that can be seen as an extreme case
of the partially separable function of Fig. 1(a). Fig. 1(c) and
Fig. 1(d) show two non-separable functions. The function in
Fig. 1(d) is totally non-separable. In this paper, we focus on
the problems having similar structures to Fig. 1(c), which are
called overlapping problems. Borrowing the concept in com-
munity detection problem [51], we can define such a structure
as an overlapping community structure that can be divided
into several communities with overlap, each community cor-
responding to a subcomponent. Explicit interactions are dense
within a community. Between communities, there will be a few
shared variables that provide bridges for implicit interactions.
Generally, the number of non-shared variables is larger than
the number of shared variables in a community. Otherwise,
it cannot be recognized as a community since most of its
variables also belong to other communities. From Fig. 1(c)

IEEE TRANSACTIONS ON CYBERNETICS 3

1 2

3

4

56

8

7

(a)

1 2

3

4

56

8

7

(b)

1 2

3

4

56

8

7

(c)

1 2

3

4

56

8

7

(d)

Fig. 1. Examples of different kinds of large-scale problems. (a) partially
separable, (b) totally separable, (c) overlapping, (d) totally non-separable.

we can see that there are two communities {x1, x2, x7, x8}
and {x3, x4, x5, x6, x7} sharing a variable x7. The overlapping
community structure widely exists in real-world applications
such as the water distribution network [37], [52] and the road
network [53]. Thus, the overlapping problem optimization by
CCEA has practical significance. In addition, without loss of
generality, the overlapping problems considered in this paper
are assumed to be minimization problems.

B. Cooperative Co-evolution

Usually, there are two procedures in a CCEA: decomposi-
tion and optimization.

1) Decomposition: The decomposition of a problem in a
CCEA can be represented as follows:

Θ = Θ1 ∪Θ2 ∪ · · · ∪ΘM (2)
s.t. ∀i ∈ {1, 2, . . . ,M},Θi 6= ∅ (3)
∀i, j ∈ {1, 2, . . . ,M} ∧ i 6= j,Θi ∩Θj = ∅ (4)

where M is the number of subcomponents. (3) shows that
there is no empty subcomponent and (4) shows that a variable
cannot be included in multiple subcomponents simultaneously.

DG [12] and its variants [13]–[15] are the state-of-the-art
decomposition methods because of the high variable interde-
pendence detecting accuracy they provide. Based on (1), DG
checks the explicit interaction between two variables xi and
xj by calculating the following three difference values:

∆xi,xj
[f] = f(xi + δi, xj + δj)− f(xi, xj) (5)

∆xi
[f] = f(xi + δi, xj)− f(xi, xj) (6)

∆xj
[f] = f(xi, xj + δj)− f(xi, xj). (7)

xi and xj are thought to explicitly interact if:

|∆xi,xj
[f]− (∆xi

[f] + ∆xj
[f])| > ε (8)

After obtaining the interdependence graph, DG decomposes
the problem in a greedy way. Each time it selects a variable

xi and gathers the variables that interact with xi into a
group, and then removes them from the interdependence graph.
RDG reduces the complexity of the interdependence detecting
algorithm by using recursive detection, but the shared variables
are still grouped randomly even in its latest version RDG3
[36]. GDG and DG2 use a depth-first search or a breadth-first
search algorithm to decompose the problem. The difference
between greedy decomposition and graphic search decomposi-
tion is that, in greedy decomposition, only explicit interaction
is considered, while in graphic search decomposition, both
explicit and implicit interactions are considered. Consequently,
DG and RDG3 can decompose an overlapping problem into
subcomponents, but GDG and DG2 cannot decompose the
overlapping problems. Since the selection of the start variable
in greedy decomposition is essentially a random process and
shared variables are grouped with the earlier selected variable
that interacts with them, actually, each shared variable is just
randomly grouped into an interactive subcomponent. Although
the greedy decomposition method can decompose an over-
lapping problem, randomly assigning the shared variables to
interactive subcomponents may not generate the most effective
grouping structure for optimization.

2) Optimization: In the optimization process, M optimizers
{O1, O2, . . . , OM} will be utilized corresponding to the M
subcomponents. In a CCEA, each time only one subcomponent
is optimized. The other subcomponents are held fixed. The
best solution of the whole problem can be generated as the
combination of the best sub-solutions:

x∗ = (x∗1,x
∗
2, . . . ,x

∗
M). (9)

Conventionally, we call this solution “context vector”. The
fitness value of the ith sub-solution of the jth subcomponent
is calculated as:

f(xj,i) = f(x∗1, . . . ,xj,i, . . . ,x
∗
M) (10)

Each optimizer will update the context vector by its best sub-
solution after optimization. The frequency of context vector
updating can be taken as the cooperation/communication fre-
quency of the optimizers.

Since each time only one one subcomponent is optimized,
which subcomponent to be optimized next becomes an impor-
tant issue. Different strategies lead to different CC frameworks
as shown in Fig. 2. Traditional CC treats all subcomponents
equally in a RR way.

In CBCC1 [44], besides the RR optimization process,
the subcomponent that has the largest contribution in each
generation, denoted as Θl, is selected to be awarded another
generation. The contribution of a subcomponent accumulates
in each generation:

ηg+1
i = ηgi + (fg − fg+1), i ∈ {1, 2, . . . ,M}, (11)

where g represents the number of generation.
CBCC2 [44] will give Θl enough generations instead of

only one extra generation until the optimization cannot see
improvement. Based on the analysis in [45], CBCC1 is more
robust than CBCC2.

However, accumulating the contribution of each subcompo-
nent may give the subcomponents that have larger historical

IEEE TRANSACTIONS ON CYBERNETICS 4

contributions awards rather than the subcomponents that have
larger present contributions. Considering this drawback, two
different frameworks, CBCC3 [46] and CCFR [48], are pro-
posed. The structures of these two frameworks are similar as
shown in Fig. 2(c).

In CBCC3, the contribution of a subcomponent is con-
sidered as the decline of the objective value in recent γ
generations:

ηg+γi = fg − fg+γ , i ∈ {1, 2, . . . ,M}. (12)

Information on historical contribution is abandoned in CBCC3.
Regarding the subcomponent selection strategy, at first, an
exploration phase is set that each subcomponent is given
γ generations to be optimized. Then, Θl is chosen to be
optimized until its contribution is no longer the largest. There
will be a very small probability to go back to the exploration
phase. Otherwise, a new Θl will be selected.

In CCFR, the contribution is calculated as:

ηg+γi =
ηgi + (fg − fg+γ)

2
, i ∈ {1, 2, . . . ,M}. (13)

After the exploration phase, CCFR also continuously chooses
Θl to optimize. When all subcomponents have the same contri-
bution, it returns to the exploration phase. Besides, whenever
an optimizer is stagnant, the contribution of its corresponding
subcomponent will be set to 0. Due to the stagnancy detecting
technique, usually, when all subcomponents have the same
contribution, the optimizers are all stagnant.

DCC [50] has two stages: the random grouping stage and the
dynamic grouping stage. Firstly, the random grouping method
is applied to optimize the problem and the contribution of each
variable accumulates for γ1 generations. In the second stage,
ranked by contribution, each time the top N1 variables and the
variables interacting with them are chosen to be optimized for
γ2 generations.

Comparing these CC frameworks, CBCC1 is the most
moderate one that is built on the RR structure and each
time only one subcomponent is awarded only one extra
generation. However, the accumulation of contribution is a
defect that cannot be ignored. CBCC3 and CCFR are more
aggressive since each time γ generations are given to a
subcomponent. They may be more suitable to the separable
problems than non-separable problems because this strategy
has abandoned RR [46]. As to the contribution calculation
methods, abandoning the historical information in CBCC3
may also cause problems since most EAs are probabilistic
algorithms that their performance in a short period is not very
stable. DCC uses a different strategy that chooses variables
rather than subcomponents during optimization. However, the
accumulation of contribution may make its dynamic grouping
method focus on a small group of variables.

III. CONTRIBUTION-BASED COOPERATIVE
CO-EVOLUTION FOR OVERLAPPING PROBLEMS

Considering the defects of the greedy decomposition and
the aforementioned CC frameworks, we propose a new CCEA
called CBCCO with a new contribution-based decomposition
method and a new contribution-based optimization framework

Θ1 Θ2 … ΘM
start end

(a)

Θ1 Θ2 … ΘM
start endΘl

(b)

Θ1 Θ2 … ΘM
start endΘl

CBCC3: probability

γγγγ γ

CCFR: max(η)==min(η) new

(c)

Θr1 Θr2 … ΘrM
start endΘdl

γ1 new

γ2

(d)

Fig. 2. Different optimization structures of different CCEAs. (a) traditional
CC, (b) CBCC1, (c) CBCC3 and CCFR, (d) DCC.

CBD

CBO

Fig. 3. Flowchart of CBCCO.

to specifically solve the large-scale overlapping problems. The
overall process of CBCCO is shown in Fig. 3. It consists of
two main stages: a CBD stage and a CBO stage. The CBD
stage can be further divided into two sub-stages: non-shared
variable allocation stage and shared variable allocation stage.
In the non-shared variable allocation stage, the problem is
first decomposed into two sets. GS = {Θ1, . . . ,ΘM} is the
set of subcomponents consisting of non-shared variables, and
OS = {Θi∩j |1 ≤ i < j ≤ M} is the set of the shared vari-
ables. Here a graphic decomposition method is designed based
on the decomposition method proposed in [40]. The shared
variable allocation stage will optimize each subcomponent for
N generations to set the initial contribution and to assign the
shared variables to the existing subcomponents GS. Moreover,
since the non-shared variables are already optimized in this
stage, not only the context vector x∗ and the contribution
vector η but also the information of the optimizers will be
saved, so that in the final optimization stage, the optimizers
will not start from scratch. Finally, CBO is used to optimize
the problem.

IEEE TRANSACTIONS ON CYBERNETICS 5

Algorithm 1 Non-shared Variable Allocation
Input: problem f(x), variable set Θ = {x1, . . . , xn}, accept-

able overlapping rate ζ.
Output: set of subcomponents consisting of non-shared vari-

ables GS, set of shared variables OS.
1: G = interdependence-detect(f(x),Θ);
2: M = 1, Θ̄ = Θ;
3: while Θ̄ is not empty do
4: Find the variable with the smallest degree x̄ in Θ̄;
5: Find {xi|xi ↔ x̄} by G, add them into ΘM with x̄;
6: Remove ΘM from Θ̄;
7: Insert ΘM into GS;
8: M = M + 1;
9: end while

10: for i = 2→M do
11: for j = 1→ i− 1 do
12: Get the overlap Θi∩j ;
13: if |Θi∩j |/|Θi| ≥ ζ or |Θi∩j |/|Θj | ≥ ζ then
14: Merge Θj into Θi;
15: Delete Θj from GS;
16: Delete overlaps related to Θj from OS;
17: M = M − 1, j = 1, i = max(i− 1, 2);
18: else
19: Insert Θi∩j into OS;
20: end if
21: end for
22: end for
23: for all Θi∩j in OS do
24: Θi = Θi −Θi∩j , Θj = Θj −Θi∩j ;
25: end for
26: return GS and OS;

A. Contribution-based Decomposition

1) Non-shared Variable Allocation: Based on our previous
work [40], a graphic decomposition method that generates
subcomponent set of non-shared variables GS and overlap set
of shared variables OS is devised.

This stage consists of four parts as shown in Algorithm
1. The first part is to detect the interdependence between
variables and get the interdependence graph G (line 1). Due
to the high detection accuracy, DG2 [14] is recommended to
be used here. The second procedure generates subcomponents
that each shared variable appears in every subcomponent that
interacts with it (lines 2-9). Then, by checking every pair of
subcomponents, we can get all shared variables in the third
part (lines 10-22). If the shared variables occupy over ζ in
a subcomponent, this pair of subcomponents will be merged
(lines 13-17). In the fourth part, all shared variables are elim-
inated from the subcomponents (lines 23-25). Finally, we get
the subcomponent set GS containing all non-shared variables
and the overlap set OS containing all shared variables.

The acceptable overlapping rate ζ is used to measure
how many shared variables between two subcomponents are
acceptable. If there are excessive shared variables between two
subcomponents, they will be merged. The rate can be adjusted
according to the real situation of the problem. According to

Algorithm 2 Shared Variable Allocation
Input: problem f(x), subcomponent set GS, shared variable

set OS, number of test generation N .
Output: contribution vector η, context vector x∗, group set

GS.
1: set M optimizers {O1, . . . , OM} corresponding to M

subcomponents;
2: initialize the contribution vector η = (η1, . . . , ηM) = 0;
3: initialize the context vector x∗ = 0;
4: for i = 1→M do
5: fo = f(x∗);
6: for j = 1→ N do
7: optimize f(xi) by Oi;
8: update x∗;
9: end for

10: ηi = fo − f(x∗);
11: end for
12: for all Θi∩j in OS do
13: if ηi > ηj then
14: Θi = Θi ∪Θi∩j ;
15: else
16: Θj = Θj ∪Θi∩j ;
17: end if
18: end for
19: store the information of the optimizers;
20: return (η,x∗,GS);

[40], it is set to 0.3 in Algorithm 1.
2) Shared Variable Allocation: In the shared variable al-

location stage, we assign the shared variables by computing
the contribution of each subcomponent in GS. After the non-
shared variable allocation process, GS only contains non-
shared variables. Since the non-shared variables are in the
majority in a subcomponent, evaluating the contribution of
a subcomponent to the whole problem by only non-shared
variables on a large probability can still reflect the contribution
difference between subcomponents correctly. The pseudo-code
is shown in Algorithm 2.

In this stage, each subcomponent is optimized for N gen-
erations. Since shared variables are not considered, directly
optimizing each subcomponent for N generations is identical
to using the RR optimization method (lines 4-11). The contri-
bution of each subcomponent accumulates in this stage (line
10):

ηi = f0 − fN

= (f0 − f1) + (f1 − f2) + · · ·+ (fN−1 − fN).
(14)

Then, for each overlap, it is assigned to the subcomponent
which has a larger contribution and interacts with it (lines 12-
18). Finally, the information of optimizers is saved for the
reset procedure in the optimization process and the algorithm
returns the results (lines 19-20).

B. Contribution-based Optimization

Experimental studies in [45] show that when the subcom-
ponents are not independent of each other, high cooperation

IEEE TRANSACTIONS ON CYBERNETICS 6

Algorithm 3 Contribution-based Optimization
Input: problem f(x), contribution vector η, context vector

x∗, group set GS, stop criterion SC.
Output: context vector x∗.

1: reset optimizers {O1, . . . , OM};
2: while stop criterion is not met do
3: for i = 1→M do
4: fo = f(x∗);
5: optimize f(xi) by Oi;
6: update x∗;
7: ηi = (ηi + (fo − f(x∗))/2.0;
8: end for
9: ηmax = max(η);

10: awardList = ∅;
11: for i = 1→M do
12: if ηmax/ηi < 2 then
13: add i into awardList;
14: end if
15: end for
16: if |awardList| == M then
17: clear awardList;
18: end if
19: for all i in awardList do
20: fo = f(x∗);
21: optimize f(xi) by Oi;
22: update x∗;
23: ηi = (ηi + (fo − f(x∗))/2.0;
24: end for
25: end while
26: return x∗;

frequency is helpful to maintain a steady optimizing speed of
the whole algorithm. Since every subcomponent is explicitly
or implicitly related to other subcomponents in an overlapping
problem, high cooperation frequency is thus crucial to solv-
ing overlapping problems. The RR structure has the highest
cooperation frequency as every subcomponent will update the
context vector in every generation. Therefore, in CBO, the
RR structure is reserved as the basis. Regarding the awarding
scheme, the basic idea is to accelerate the optimizing speed of
the important subcomponents so that they can reach the same
contribution level with the less important subcomponents.
When most optimizers are on the same level, use RR to
optimize them. Based on this intuition, CBO is designed as
Algorithm 3.

First, the optimizers should be reset to add the shared
variables into optimization using the information stored in the
shared variable allocation stage (line 1). For example, if a
population-based EA like differential evolution is used, the
individuals evolved in the previous stage can be inherited and
new dimensions can be inserted into each individual to involve
the shared variables. If a distribution-based EA like evolution
strategy is used, the distribution models evolved in the previous
stage can be inherited and new dimensions can be added to
the models to involve the shared variables.

Then, the main loop (lines 2-25) of the algorithm can be
divided into three parts. The first part is the RR optimization

Θ1 Θ2 … ΘM
start

endΘl1 … Θlm

Fig. 4. Structure of CBO. {Θl1, . . . ,Θlm} represents the awarded subcom-
ponents in the first echelon.

(lines 3-8). All subcomponents are optimized in a RR manner,
and the contribution of each subcomponent is updated:

ηg+1
i =

ηgi + (fg − fg+1)

2
. (15)

According to (15), the historical contribution halves in each
generation which follows an exponential speed. To make
the historical contribution play a role in the optimization
and meanwhile accommodate to the fast decay speed, a big
base value should be established. That is the reason why
the contribution accumulates in the shared variable allocation
stage rather than updating by (15).

The second part is to choose the subcomponents that should
be awarded (lines 9-18). First, the maximum contribution
among subcomponents ηmax is obtained (line 9). Then, for
each subcomponent, if its contribution is bigger than half
ηmax, we put it into the award list (lines 12-14). We call these
subcomponents “the first echelon”. The third part is to award
the first echelon (lines 19-24). Each subcomponent in the
echelon gets an extra generation to evolve, and the contribution
is also updated. The structure of CBO is shown in Fig. 4.

In Algorithm 3, half ηmax is set as the standard to select the
first echelon. The reason is due to the contribution calculating
method and the awarding method. The historical contribution
halves in each generation according to (15). Considering the
worst situation that the subcomponent whose contribution is
the largest does not improve the objective value at all in
the awarded extra generation, its contribution will be directly
updated to half its previous value. Thus, if the contribution
of a subcomponent before awarding is just smaller than half
ηmax, definitely it does not belong to the first echelon.

C. Discussions

Here, we discuss the rationality of CBCCO. First, the dif-
ference between CBO and some other decomposition methods
is shown and why CBD works is explained conceptually.
Then, the applicability of CBO to overlapping problems is
compared with the other contribution-based CC optimization
frameworks.

1) Contribution-based Decomposition: First, CBO is com-
pared with some other decomposition methods that generate
fixed grouping results on how they allocate the shared vari-
ables when dealing with an overlapping problem. From Table
I, we can see that the way CBD allocates shared variables is
different from the others. Each shared variable is assigned to a
related subcomponent that has larger contribution rather than
random allocation or duplication.

IEEE TRANSACTIONS ON CYBERNETICS 7

TABLE I
DIFFERENCE BETWEEN DIFFERENT DECOMPOSITION METHODS WHEN

HANDLING SHARED VARIABLES.

Methods Shared Variable Allocation
DG2, GDG will not divide the problem

DG, RDG3 randomly assign each shared variable to a related
subcomponent

FEA duplicate shared variables in related subcomponents
and select their values through competition

CBD assign each shared variable to a related subcompo-
nent that has larger contribution

Except CBD, RDG3 is the most recent one that is used to
decompose overlapping problems. Here, we use an example
to show why assigning shared variables to the subcomponents
that have larger contributions is better than random allocation.
Consider an overlapping function with two subcomponents:

f(x) = f1(x1,y) + f2(x2,y) (16)

where y is the overlap between f1 and f2. Assume f1 out-
weighs f2, and due to the nature of the large-scale overlapping
problem, we find no optimizer that can solve the problem
as a whole, but only optimizers that can solve f1 and f2
separately. After the gth generation, we have context vector
x∗ = (x∗1,y

∗,x∗2). Then, in the (g+1)th generation, we con-
sider two decomposition strategies: a) assigning y to the first
subcomponent; b) assigning y to the second subcomponent.

If y is assigned to the first subcomponent, we can get two
groups: {x1,y} and {x2}. In CC, the optimization process of
the first group is:

minf(x|x2=x∗2
) = min[f1(x1,y) + f2(x2 = x∗2,y)] (17)

Suppose we get (x1 = x∗∗1 ,y = y∗∗) after optimizing the first
group. Then for the second group, the optimization process
becomes:

minf(x|x1=x∗∗1 ,y=y∗∗) = minf2(x2,y = y∗∗). (18)

In this assigning strategy, when the first group is optimized,
if f1 outweighs f2 greatly, f2(x2 = x∗2,y) is only a small dis-
turbance to the optimization of f1(x1,y). If f1 only outweighs
f2 slightly, optimizing the first group is actually optimizing the
whole f1 and a part of f2 since f2(x2 = x∗2,y) is not greatly
smaller than f1(x1,y). When optimizing the second group,
the non-shared variables of f2, i.e. x2, is optimized.

If y is assigned to the second subcomponent, we can get two
groups: {x1} and {x2,y}. When the first group is optimized,
we have:

minf(x|x2=x∗2 ,y=y∗) = minf1(x1,y = y∗). (19)

Suppose we get x1 = x∗∗1 after optimizing the first group.
Then, for the second group, the optimization process is:

minf(x|x1=x∗∗1
) = min[f1(x1 = x∗∗1 ,y) + f2(x2,y)]. (20)

This time, when optimizing the first group, the non-shared
part of f1, i.e. x1, is optimized. When optimizing the second
group, if f1 outweighs f2 greatly, it is actually optimizing
f1(x1 = x∗∗1 ,y) rather than f2. Only if f1 outweighs f2
slightly, f2 can be optimized. Thus, assigning the shared

variables to an unimportant subcomponent can be considered
as a decomposition of the important subcomponent, and the
unimportant subcomponent itself in the worst situation will
be ignored. If we already know that the applied optimizer
can deal with the low-dimensional subcomponents efficiently
as we have assumed before, it will be better to assign the
shared variables to the important subcomponents that have
larger contributions.

2) Contribution-based Optimization: The differences be-
tween CBO and several existing contribution-based CC op-
timization frameworks are explained to show why CBO is
more suitable to overlapping problems than the others. Table
II compares these frameworks in two aspects, contribution
calculation method and computing resource allocation method.

Considering the contribution calculation method, CBO con-
siders both the historical contributions and the current contri-
butions of the subcomponents, and sets a fast attenuation speed
to the historical contribution to balance the influence between
these two parts. In terms of the computing resource allocation
method, CBCC3, CCFR, and DCC have abandoned RR.
CBCC1 and CBCC2 award only one subcomponent each time.
Different from them, CBO reserves RR and awards multiple
subcomponents in each generation. This difference can also
be shown from the comparison of the structures shown in Fig.
2 and Fig. 4. Due to the utilization of the new contribution
calculation method and the new resource allocation method,
CBO can both quickly synchronize all subcomponents’ contri-
butions to a same level by awarding important subcomponents
more computing resources and maintain a high cooperation
frequency among optimizers which is critical to the opti-
mization of overlapping problems. Due the page limit, the
theoretical and empirical analyses of cooperation frequencies
of different CC optimization methods are demonstrated in the
supplementary material.

IV. EXPERIMENTAL SETUP

Before comparing CBCCO with other algorithms, in this
section, the benchmark functions are first introduced. Then,
the setup about CBCCO is given, and the only parameter
of CBCCO, i.e. the generation number of shared variable
allocation stage N , is selected.

A. Benchmark

CEC2013 LSGO benchmark functions [54] are widely-used
to test the performance of EAs proposed for LSGO problems.
Among the 15 functions, there are two overlapping functions,
f13 and f14. f13 is a conforming overlapping function in which
the optimum values of shared variables are the same in differ-
ent subcomponents. f14 is a conflicting overlapping function in
which the optimum values of shared variables are different in
different subcomponents. Thus, for a conforming overlapping
function, the optimization of one subcomponent may benefit
the other subcomponents that overlap with it. However, for
a conflicting overlapping function, the optimization of one
subcomponent may interfere with the optimization of other
subcomponents. Both functions use the schwefel function as
the elementary function. To specifically study the overlapping

IEEE TRANSACTIONS ON CYBERNETICS 8

TABLE II
DIFFERENCE BETWEEN DIFFERENT CONTRIBUTION-BASED COOPERATIVE CO-EVOLUTION OPTIMIZATION FRAMEWORKS.

Methods Contribution Calculation Resource Allocation
CBCC1 accumulation every generation RR, rewarding one subcomponent one generation
CBCC2 accumulation every generation RR, rewarding one subcomponent until it converges
CBCC3 objective improvement in recent γ generations select one subcomponent evolving γ generations
CCFR accumulation with attenuation every γ generations selecct one subcomponent evolving γ generations
DCC accumulation every γ2 generation select one subcomponent evolving γ2 generations
CBO accumulation with attenuation every generation RR, rewarding multiple subcomponents one generation

TABLE III
LARGE-SCALE OVERLAPPING BENCHMARK CONSISTS OF 12 FUNCTIONS.

Func. Character Group Size Range Elementary Function
f1 Conforming 50× 5 + 25× 10 + 100× 5

x ∈ [−100, 100] fschwefel(x) =
∑D

i=1(
∑i

j=1 xi)
2f2 Conflicting 50× 5 + 25× 10 + 100× 5

f3 Conforming 50× 20
f4 Conflicting 50× 20
f5 Conforming 50× 5 + 25× 10 + 100× 5

x ∈ [−100, 100] felliptic(x) =
∑D

i=1 10
6 i−1
D−1 x2i

f6 Conflicting 50× 5 + 25× 10 + 100× 5
f7 Conforming 50× 20
f8 Conflicting 50× 20
f9 Conforming 50× 5 + 25× 10 + 100× 5

x ∈ [−5, 5] frastrigin(x) =
∑D

i=1[x2i − 10cos(2πxi) + 10]
f10 Conflicting 50× 5 + 25× 10 + 100× 5
f11 Conforming 50× 20
f12 Conflicting 50× 20

problem, there are three different benchmarks proposed [36],
[40], [50]. Compared with the benchmark functions proposed
in [36], [50], the benchmark of [40] is more comprehensive
since not only different elementary functions but functions
with both uniform and non-uniform subcomponent sizes are
considered 1. Thus, in the following experiments, this bench-
mark is used.

From Table III, we can see that besides the schwefel
function, another two elementary functions: elliptic function
and rastrigin function, are also used. Schwefel function and
elliptic function are two unimodal functions; rastrigin function
is a multimodal function. Thus, f9-f12 are much harder to
be optimized than the former 8 functions. Meanwhile, both
uniform and non-uniform subcomponent sizes are considered
in the benchmark. For functions with uniform subcomponent
size, there are totally 20 subcomponents with 50 decision
variables each. The imbalanced importance is realized by
setting different weight factors to different subcomponents. For
functions with non-uniform subcomponent sizes, there are 5
subcomponents with 50 decision variables each, 10 subcompo-
nents with 25 variables each, and 5 subcomponents with 100
decision variables each. The imbalanced importance is realized
by both different weight factors and different subcomponent
sizes. For each function, there are 95 shared variables. Thus,
the dimension of one function is 1000 − 95 = 905. f13 and
f14 of CEC2013 LSGO benchmark are exactly f1 and f2 in
Table I, respectively.

B. Parameter Setting

In CBCCO, covariance matrix adaptation evolution strategy
(CMA-ES) is chosen as the optimizer due to its excellent

1The benchmark is available on https://github.com/Flyki/Large-Scale-
Overlapping-Optimization

capability to solve low-dimensional continuous optimization
problems [13], [36], [48], [55], [56]. The parameters of CMA-
ES are set by following the commonly used settings [56].

Besides the parameters of CMA-ES, there is only one
parameter in CBCCO, the number of generation N in the
shared variable allocation stage. Theoretically, a larger N will
bring more stable assignment. However, if N is too large,
it will affect the optimization stage because of the limited
computing resources. Before selecting a suitable value for
N , an upper bound is set to 100 empirically just as same
as γ in CBCC3 and CCFR. Setting the interval as 10, 10
candidates values {10, 20, . . . , 100} are selected within (0,
100]. Each value is tested on each function for 30 times.
Before choosing a suitable value, a sufficiently large number
(i.e. 200) is tested 30 times on each function to get a stable
assignment as the standard. According to our experiment, the
assignment is already stable when N is equal to 200 that on
each function the 30 times assignments are all identical. The
stability of an N value is defined as the ratio of the number of
the assignments that are identical to the standard. Experimental
results are shown in Fig. 5.

As we expected, generally a larger N brings a higher
stability on all functions. For the first four functions, it
is easy to get a stable assignment that even N = 20 is
sufficient to achieve 100% stability. For f5-f8, it is harder
to get a stable assignment, but eventually when N = 100,
CBD gets stable assignments on these four functions. For
the last four functions, N = 80 is large enough. Generally,
we can see that N = 100 is sufficiently large for CBD to
get stable assignments on all functions but does not lead to
high computational cost. Thus, in the following experiment,
N is set to 100. Since the essence of setting this parameter is
to figure out the contribution difference between overlapping
subcomponents, based on the results, we suggest that for a

IEEE TRANSACTIONS ON CYBERNETICS 9

(a) (b) (c)

Fig. 5. Stability of shared variable assignment under four different N values. (a) f1-f4, (b) f5-f8, (c)f9-f12.

new problem, N = 2 · n/M would be a good starting point.

V. COMPARISONS AND ANALYSES

First of all, CBCCO is compared with the state-of-the-art
EAs that were proposed for LSGO problems, including some
algorithms especially proposed for large-scale overlapping
problems. Then, further analyses about CBD and CBO are
made to find the reason why CBCCO is effective in optimizing
overlapping problems.

Since the interdependence detecting method is not a focus
in this paper, and DG variants can already detect the variable
interdependence in a very high accuracy (DG2 [14] can already
achieve 100% accuracy on all LSGO benchmark functions.),
we adopt the experimental design method used in [45], [46],
[57] that the ideal interdependence graph is utilized for all
compared algorithms to avoid the influence caused by using
different interdependence detecting methods. 30 independent
runs are executed for each algorithm to get the statistic
information including mean objective value and standard de-
viation. Meanwhile, the two-sided Wilcoxon rank-sum test is
conducted between the proposed algorithm and the compared
algorithms to observe whether CBCCO is significantly better
than them. The significance level is set to 0.05. When there
are multiple comparisons, the Bonferroni correction is used to
adjust the significance level. To make fair comparisons, the
maximum number of fitness evaluations (FEs) is used as the
stopping criterion for all the compared algorithms. According
to the suggestion of the benchmark [54], it is set to 3× 106.

A. Comparisons with State-of-the-art Algorithms

To check the performance of CBCCO, we compared it
with the start-of-the-art EAs, including competitive swarm
optimizer (CSO) [5], level-based learning swarm optimizer
(LLSO) [4], success-history-based adaptive differential evo-
lution with iterative local search (SHADEILS) [6], RDG3
[36], DCC [50], FEA [41], and cooperative co-evolution
with adaptive subcomponents (CCAS) [33]. CSO, LLSO, and
SHADEILS are not CC-based algorithms. They focus on
improving either the exploration or exploitation ability of the
algorithm. RDG3, DCC, FEA, and CCAS are CCEAs. RDG3
and DCC are especially proposed for large-scale overlapping
problems. FEA requires overlaps between different subcom-
ponents, which is in line with the problem structure. CCAS

0 1 x 1 0 6 2 x 1 0 6 3 x 1 0 6
1 0 - 7

1 0 - 1

1 0 5

1 0 1 1

Ob
jec

tive
 Va

lue

F E s

 C S O
 L L S O
 S H A D E I L S
 R D G 3
 D C C
 F E A
 C C A S
 C B C C O

(a)

0 1 x 1 0 6 2 x 1 0 6 3 x 1 0 6
1 0 6

1 0 8

1 0 1 0

1 0 1 2

Ob
jec

tive
 Va

lue

F E s

 C S O
 L L S O
 S H A D E I L S
 R D G 3
 D C C
 F E A
 C C A S
 C B C C O

(b)

0 1 x 1 0 6 2 x 1 0 6 3 x 1 0 6

1 0 9

1 0 1 1

1 0 1 3

Ob
jec

tive
 Va

lue

F E s

 C S O
 L L S O
 S H A D E I L S
 R D G 3
 D C C
 F E A
 C C A S
 C B C C O

(c)

0 1 x 1 0 6 2 x 1 0 6 3 x 1 0 6
1 0 6

1 0 7

1 0 8

Ob
jec

tive
 Va

lue
F E s

 C S O
 L L S O
 S H A D E I L S
 R D G 3
 D C C
 F E A
 C C A S
 C B C C O

(d)

Fig. 6. Convergence curves of CSO, LLSO, SHADEILS, RDG3, DCC, and
CBCCO. (a) f3, (b) f4, (c) f5, (d) f9.

is a representative CCEA using random grouping method. In
addition, SHADEILS and RDG3 the winners of the CEC2018
and CEC2019 LSGO competitions, respectively.

Since there is no interaction detection process in CSO,
LLSO, SHADEILS, and CCAS, all 3× 106 FEs can be used
for optimization. For RDG3, according to [36], it uses roughly
1.65× 104 FEs to decompose a benchmark function. Thus, it
can use 2.9835×106 FEs during optimization. For DCC, FEA,
and CBCCO, since they both require a whole interdependence
graph, according to DG2 [14], 4.1×105 FEs will be used in the
decomposition process. Thus, there are 2.59×106 FEs can be
used during optimization. Experimental results are shown in
Table IV. Moreover, the convergence curve of each algorithm
is drawn. Due to the page limitation, Fig. 6 only shows four
representative cases on f3, f4, f5, and f9. The full set of
figures can be found in the supplementary material.

The performance of CBCCO is checked by comparing with
different kinds of EAs.

1) Compared with CSO and LLSO, CBCCO outperforms
them on the first 8 functions and is inferior to them on

IEEE TRANSACTIONS ON CYBERNETICS 10

TABLE IV
COMPARISON OF OBJECTIVE VALUES ON 12 BENCHMARK FUNCTIONS BETWEEN CSO, LLSO, SHADEILS, RDG3, DCC, FEA, CCAS, AND CBCCO

Func Stats CSO LLSO SHADEILS RDG3 DCC FEA CCAS CBCCO

f1
mean 7.50E+08(+) 2.83E+08(+) 9.31E+05(+) 5.85E+04(+) 2.38E+09(+) 3.09E+10(+) 5.20E+09(+) 1.21E+03

std. 3.28E+08 1.44E+08 7.80E+05 8.85E+04 1.42E+09 1.11E+10 3.93E+09 1.21E+03

f2
mean 4.86E+09(+) 1.14E+08(+) 7.98E+06(+) 4.42E+06(=) 2.79E+10(+) 5.12E+11(+) 2.49E+11(+) 4.43E+06

std. 4.96E+09 6.01E+07 9.05E+05 6.88E+04 2.43E+10 1.70E+11 1.36E+11 5.09E+04

f3
mean 6.40E+08(+) 2.29E+08(+) 2.22E+05(+) 6.26E-02(+) 4.16E+09(+) 6.50E+10(+) 8.28E+09(+) 1.32E-07

std. 2.30E+08 9.32E+07 2.03E+05 1.42E-01 1.37E+09 1.62E+10 6.22E+09 2.34E-07

f4
mean 7.58E+09(+) 9.11E+08(+) 5.23E+06(+) 4.11E+06(=) 1.09E+11(+) 1.05E+12(+) 2.41E+11(+) 4.09E+06

std. 3.63E+09 1.13E+09 3.74E+05 8.30E+04 5.12E+10 4.09E+11 1.68E+11 8.54E+04

f5
mean 3.25E+11(+) 1.48E+11(+) 2.82E+10(+) 2.01E+09(+) 8.88E+11(+) 1.56E+13(+) 6.74E+11(+) 1.09E+08

std. 2.61E+10 2.41E+10 6.57E+09 5.06E+08 3.01E+11 5.65E+12 2.68E+11 6.48E+07

f6
mean 3.10E+12(+) 1.59E+12(+) 1.78E+11(+) 9.36E+08(+) 1.20E+13(+) 1.77E+14(+) 6.20E+12(+) 8.28E+08

std. 4.00E+11 2.72E+11 3.62E+10 1.53E+08 4.13E+12 6.15E+13 2.14E+12 1.56E+07

f7
mean 6.91E+11(+) 4.21E+11(+) 5.68E+10(+) 5.70E+07(+) 2.11E+12(+) 2.43E+13(+) 1.11E+12(+) 1.42E+07

std. 6.66E+10 5.68E+10 1.37E+10 6.14E+07 4.88E+11 8.31E+12 3.36E+11 3.54E+07

f8
mean 1.06E+13(+) 5.56E+12(+) 4.45E+11(+) 2.90E+11(+) 4.96E+13(+) 3.38E+14(+) 1.85E+13(+) 2.83E+08

std. 1.17E+12 6.27E+11 1.12E+11 1.14E+11 1.65E+13 7.77E+13 5.76E+12 6.69E+07

f9
mean 2.53E+06(-) 3.33E+06(-) 1.16E+07(+) 1.11E+07(=) 3.78E+07(+) 9.47E+07(+) 1.81E+07(+) 1.02E+07

std. 3.58E+05 4.99E+05 1.19E+06 1.86E+06 7.92E+06 1.24E+07 4.89E+06 1.78E+06

f10
mean 5.97E+07(-) 6.53E+07(-) 1.40E+08(-) 1.75E+08(=) 8.59E+08(+) 1.47E+09(+) 2.67E+08(+) 1.87E+08

std. 6.49E+06 9.02E+06 1.80E+07 3.04E+07 2.16E+08 2.92E+08 6.63E+07 4.20E+07

f11
mean 5.36E+06(-) 6.93E+06(-) 1.62E+07(-) 1.87E+07(=) 7.13E+07(+) 1.79E+08(+) 2.47E+07(+) 1.94E+07

std. 5.93E+05 7.68E+05 2.10E+06 2.81E+06 1.59E+07 2.92E+07 3.74E+06 2.44E+06

f12
mean 9.29E+07(-) 1.14E+08(-) 2.64E+08(-) 4.17E+08(+) 1.35E+09(+) 3.47E+09(+) 4.19E+08(+) 3.30E+08

std. 1.38E+07 1.84E+07 3.38E+07 7.07E+07 3.13E+08 4.38E+08 5.04E+07 6.26E+07
W/T/L 8/0/4 8/0/4 9/0/3 7/5/0 12/0/0 12/0/0 12/0/0
1 (+), (-), and (=) represent that CBCCO is significantly better than, significantly worse than, and equivalent to the compared algorithm according

to the Wilcoxon rank-sum test.
2 “W/T/L” represents on how many functions CBCCO wins/ties/loses the comparison.

the last 4 functions. CSO and LLSO have stronger explo-
ration abilities than others, but their exploitation ability is
weak. Thus, they do not have very fast optimizing speed
on f1-f8, but on multimodal functions f9-f12, the great
exploration ability helped them to achieve better objective
values than CBCCO.

2) Compared with SHADEILS, CBCCO is significantly
better on f1-f9, but is worse on f10-f12. The exploitation
ability SHADEILS is better than CSO, but is not good
enough to surpass CBCCO. Thus, on f1-f9, it is better
than CSO but is worse than CBCCO. On f10-f12, the
situation is just the opposite. Generally, the performance
of SHADEILS is in the middle position between CSO
and CBCCO.

3) Compared with RDG3, CBCCO outperforms it on 7
functions and has similar performance to it on 5 func-
tions. RDG3 decomposes the overlapping problems into
subcomponents and also uses the canonical CMA-ES
to optimize them like CBCCO. Since the canonical
CMA-ES is very good at optimizing low-dimensional
unimodal functions, RDG3 obtains better results than
CSO, LLSO, and SHADEILS on f1-f8. However, since
the grouping structure generated by the greedy decom-
position method cannot support contribution-based CC
frameworks, RDG3 is less effective than CBCCO. Both
RDG3 and CBCCO perform poorly on f9-f12, because
of the applied optimizer, CMA-ES. An empirical study
in [58] shows that the canonical CMA-ES usually cannot
handle multimodal functions.

4) Compared with DCC, FEA, and CCAS, CBCCO is

significantly better on all functions. This fact implies that
random grouping or parallel CC may not very effective.
Although DCC also uses the interaction relationship
between variables in its optimization, the accumulated
contribution still takes control of the algorithm that causes
low cooperation frequency.

5) From Fig. 6, we can see that on f3, f4, and f5, CBCCO
has the fastest convergence speed. On the conforming
functions f3 and f5, it maintains this speed from the
beginning to the end. On the conflicting function f4,
although CBCCO, RDG3, and SHADEILS finally get
similar results, the convergence speed of CBCCO is still
the fastest. However, when the applied optimizer cannot
handle the subcomponents effectively such as on f9, all
algorithms converge very early including CBCCO. In
summary, the function figures show that the convergence
speed of CBCCO is fast.

Generally, the results show that CBCCO is among the
best of the compare algorithms. On the unimodal functions,
its performance is significantly better than the compared
algorithms. On the multimodal functions, its performance is
not that satisfactory. However, this does not necessarily mean
that CBCCO only works well on unimodal or some simple
problems, since other EAs can also be applied in CBCCO.
Many CCEAs have verified that using different optimizers in
CC can bring different effects and which optimizer to use is
problem-dependent [12], [48]. Actually, simply enlarging the
population size of CMA-ES and setting a restart procedure can
improve the performance of CBCCO on f9-f12 greatly. The
original population size is set as λi = 4+b3lnnic in canonical

IEEE TRANSACTIONS ON CYBERNETICS 11

TABLE V
OBJECTIVE VALUES OBTAINED BY CBCCO2 ON MULTIMODAL

FUNCTIONS WITH ADJUSTED CMA-ES.

Func. Stats CSO LLSO CBCCO2

f9
mean 2.53E+06(-) 3.33E+06(+) 2.80E+06

std. 3.58E+05 4.99E+05 4.03E+05

f10
mean 5.97E+07(+) 6.53E+07(+) 4.74E+07

std. 6.49E+06 9.02E+06 8.70E+06

f11
mean 5.36E+06(+) 6.93E+06(+) 4.71E+06

std. 5.93E+05 7.68E+05 5.47E+05

f12
mean 9.29E+07(+) 1.14E+08(+) 8.43E+07

std. 1.38E+07 1.84E+07 9.61E+06

CMA-ES, where λi is the population size of the ith optimizer
and ni is the number of the ith subcomponent’s dimension.
Here, we enlarge it to λi = 2×ni. The restart condition is set
to σ < max(x) ·10−3. The new version of CBCCO is denoted
as CBCCO2. CSO and LLSO are taken as the control group
since they achieved the best results on these four functions.
The performance of CBCCO2 on f9-f12 is shown in Table V.

It is clear that when the optimizer is adjusted, the per-
formance of CBCCO has the ability to surpass the other
algorithms. This time, only on f9, CBCCO is beaten by CSO.
On the other three functions, it is significantly better than CSO
and LLSO. Overall, the results of Table IV and Table V show
that CBCCO can significantly outperform the other state-of-
the-art EAs on large-scale overlapping problems.

B. Analysis of CBD

To gain a deep sight of CBCCO, we analyse CBD and
CBO separately to check their advantages. First, to verify
the effectiveness of CBD, it is compared with the greedy
decomposition method based on the ground-truth that all
subcomponents have been correctly recognized. Second, the
condition under which CBD is effective is investigated.

1) Comparison between CBD and Greedy Decomposition:
In the greedy decomposition method, shared variables are
randomly assigned to an interactive subcomponent. To get
a fixed decomposition results of the greedy decomposition
method, for each shared variable subset Θi∩j , i < j, it is
assigned to Θi. Besides, the reverse version of CBD, denoted
as CBD-R, in which each shared variable is assigned to the
subcomponent that has smaller contribution is also tested as
a control group. A hypothesise is made that among the three
decompositions, CBD is better than the greedy decomposition,
and CBD-R is the worst. Moreover to avoid the influence of
the optimization structure, RR is used. Experimental results
are displayed in Table VI.

According to the results, our hypothesis is basically verified
that CBD outperforms the greedy method and CBD-R on
most functions, and CBD-R gets the worst performance.
Specifically, according to the results of Wilcoxon rank-sum
tests, CBD is significantly better than CBD-R on all 12
functions, and is significantly better than the greedy method on
6 functions {f3, f5-f9, f12}. There are no functions on which
CBD is worse than the greedy method.

Moreover, the convergence curves are drawn. Fig. 7 shows
four representative cases on f3, f4, f5, and f9. The full set

TABLE VI
COMPARISON OF OBJECTIVE VALUES BETWEEN CBD-R, GREEDY

DECOMPOSITION, AND CBD.

Func. Stats CBD-R Greedy CBD

f1
mean 2.41E+06(+) 2.88E+05(=) 3.55E+05

std. 2.47E+06 3.04E+05 5.95E+05

f2
mean 4.52E+06(+) 4.42E+06(=) 4.40E+06

std. 1.83E+05 4.70E+04 4.51E+04

f3
mean 3.66E+02(+) 8.99E+00(+) 2.03E-08

std. 3.40E+02 8.18E+00 7.45E-08

f4
mean 4.18E+06(+) 4.10E+06(=) 4.10E+06

std. 1.50E+05 8.64E+04 8.67E+04

f5
mean 1.92E+10(+) 5.65E+09(+) 7.32E+08

std. 5.45E+10 3.38E+09 3.34E+08

f6
mean 2.26E+11(+) 2.11E+11(+) 9.22E+08

std. 5.30E+10 9.59E+10 2.04E+08

f7
mean 1.09E+10(+) 1.61E+10(+) 7.64E+07

std. 3.90E+09 8.02E+09 1.59E+08

f8
mean 1.63E+11(+) 9.67E+10(+) 4.54E+09

std. 5.83E+10 6.65E+10 1.07E+10

f9
mean 1.68E+07(+) 1.36E+07(+) 9.83E+06

std. 3.86E+06 2.39E+06 1.81E+06

f10
mean 3.12E+08(+) 2.16E+08(=) 1.89E+08

std. 9.58E+07 5.89E+07 3.91E+07

f11
mean 2.26E+07(+) 2.07E+07(=) 1.92E+07

std. 3.33E+06 3.05E+06 2.55E+06

f12
mean 4.30E+08(+) 3.64E+08(=) 3.30E+08

std. 8.56E+07 6.56E+07 7.02E+07
W/T/L 12/0/0 6/6/0

of figures can be found in the supplementary material. First,
Fig. 7(a) and Fig. 7(c) have verified our analysis that if an
optimizer can solve the subcomponents efficiently, it will be
less efficient to assign the shared variables to the unimportant
subcomponents than to the important subcomponents. Fig. 7(b)
shows that the three decomposition methods converge to the
same level on this conflicting function, but we can still find
that CBD is faster than the other two. Fig. 7(d) shows that
they are all trapped into local optima. However, even under
this circumstance, CBD still has slight advantage. Overall, the
results have verified the analysis made in Section III.C and
shown that CBD is effective.

2) Condition of the Effectiveness of CBD: According to
the analysis and the experimental results, we have known
that when there is contribution difference between subcompo-
nents, CBD will be effective, but how large the contribution
difference should be to exhibit the advantage of CBD is
unknown. Here, we choose f3 to test this problem under
different levels of contribution difference. As shown in Table I,
f3 has uniform subcomponent size. Therefore, we can adjust
each subcomponent’s importance by setting different weight
factors. Another reason to choose f3 is that the uncertainties
like premature and local optima can be avoided as shown in
Fig. 7(a) that even when FEs = 3 × 106, the three methods
are still maintaining good optimizing speeds.

To set different contribution differences, first, the weight
factors of all subcomponents with odd indices are set to wo =
1. Then, the weight factors of all subcomponents with even
indices are set to 6 different values we ∈ {1, 1.25, 1.5, 2, 3, 4}
each time. When we = 1, all subcomponents have the same
importance to the problem. When we = 4, the contribution
of even subcomponents are 4 times the contribution of odd

IEEE TRANSACTIONS ON CYBERNETICS 12

(a) (b)

(c) (d)

Fig. 7. Convergence curves of CBD-R, Greedy, and CBD. (a) f3, (b) f4, (c)
f5, (d) f9.

(a) (b)

Fig. 8. Objective values and significance levels obtained by different decom-
position methods under different levels of contribution difference. The dashed
line in (b) represents the significance level 0.025 with Bonferroni correction.
When the value is underneath the dashed line, CBD is significantly better
than the other two methods.

subcomponents. The objective values are shown in Fig. 8(a).
The results of the Wilcoxon rank-sum tests are shown in Fig.
8(b) to check when CBD becomes significantly better than the
other two methods.

Fig. 8 basically matches our expectation that when the con-
tribution difference increases, the advantage of CBD strength-
ens. From Fig. 8(a), we can find that the objective values
obtained by the three decomposition methods all grow along
with the contribution difference. Generally, CBD-R is the
worst, the greed decomposition method is in the middle,
and CBD is the best. Seeing Fig. 8(b), we can find that
when we ≈ 2, CBD starts to be significantly better than
the greed decomposition method according to the significance
level 0.025. When we ≥ 3, CBD can certainly show its
advantage. Actually, if the interdependence graph has been
obtained, CBD is always a good choice worth considering
since it at worst can turn into a greedy decomposition method
when all subcomponents have the identical importance.

TABLE VII
COMPARISON OF OBJECTIVE VALUES BETWEEN RR, CBCC1, CCFR, AND

CBO

Func. Stats RR CBCC1 CCFR CBO

f1
mean 3.55E+05(+) 1.18E+03(+) 1.29E+09(+) 4.98E+01
std. 5.95E+05 1.24E+03 3.16E+09 6.08E+01

f2
mean 4.40E+06(-) 4.40E+06(-) 4.76E+10(+) 4.43E+06
std. 4.51E+04 4.11E+04 7.79E+10 5.09E+04

f3
mean 2.03E-08(+) 5.00E-06(+) 1.32E+09(+) 9.69E-10
std. 7.45E-08 2.68E-05 3.72E+09 1.70E-09

f4
mean 4.10E+06(=) 4.09E+06(=) 9.49E+09(+) 4.09E+06
std. 8.67E+04 7.30E+04 3.47E+10 8.54E+04

f5
mean 7.32E+08(+) 9.79E+08(+) 1.21E+12(+) 4.09E+07
std. 3.34E+08 4.86E+08 3.32E+12 3.47E+07

f6
mean 9.22E+08(+) 9.70E+08(+) 5.12E+13(+) 8.20E+08
std. 2.04E+08 4.08E+08 9.89E+13 1.11E+07

f7
mean 7.64E+07(+) 4.04E+07(+) 6.70E+11(+) 2.76E+06
std. 1.59E+08 7.88E+07 1.70E+12 7.76E+06

f8
mean 4.54E+09(+) 3.17E+08(+) 1.02E+14(+) 2.54E+08
std. 1.07E+10 1.59E+08 2.17E+14 4.77E+07

f9
mean 9.83E+06(=) 1.05E+07(=) 1.03E+07(=) 1.02E+07
std. 1.81E+06 1.34E+06 1.51E+06 1.78E+06

f10
mean 1.89E+08(=) 1.87E+08(=) 1.65E+08(-) 1.87E+08
std. 3.91E+07 3.26E+07 4.16E+07 4.20E+07

f11
mean 1.92E+07(=) 2.02E+07(=) 1.82E+07(=) 1.94E+07
std. 2.55E+06 2.66E+06 2.76E+06 2.44E+06

f12
mean 3.30E+08(=) 3.42E+08(=) 3.35E+08(=) 3.30E+08
std. 7.02E+07 4.58E+07 4.27E+07 6.26E+07

W/T/L 6/5/1 6/5/1 8/3/1

C. Analysis of CBO

In this subsection, CBO is compared with two other
contribution-based CC frameworks, CBCC1 and CCFR.
CBCC1 also uses the RR structure as their basis, and according
to [45] it is more recommended than CBCC2. CCFR is a
state-of-the-art framework that has a different structure from
CBCC1 and CBCC2. CBD and CMA-ES are also used in
CBCC1 and CCFR. Since the stagnancy detection method of
CCFR is designed for EAs that maintain a fixed population
[48], the stagnancy detection method for CMA-ES is set
that if for a specific number of successive generations there
is no improvement of the objective value, the optimizer is
considered to be stagnant. Following the original setting, this
number is set to the subcomponent size. RR is tested as the
baseline. The results are shown in Table VII. Convergence
curves are also drawn that can be found in the supplementary
material Fig. C.

According to the mean values, CBO outperforms the other
algorithms on 7 functions {f1, f3, f5-f8, f12}. The results of
Wilcoxon rank-sum tests tell us that only on f2 and f10, CBO
is beaten by RR, CBCC1, and CCFR, respectively. On other
functions, CBO either outperforms the other algorithms or has
a similar performance to them. Generally, the results show that
CBO is very efficient in accelerating the optimization speed.

Regarding the adaptive capacities of different CC frame-
works to overlapping problems, generally, the results in Table
VII show that CBO, CBCC1, and RR are better than CCFR.
This fact indicates that the RR structure is indeed necessary
when solving overlapping problems. CBO and CBCC1 seldom
hinder the optimization compared with RR. Even when CBO
gets worse results than RR on f2, according to the mean
objective values, the gap is not big. However, the results show

IEEE TRANSACTIONS ON CYBERNETICS 13

that on f1-f8, CCFR performs much worse than RR, CBCC1,
and CBO. Thus, a verdict can be made that the contribution-
based CC frameworks that conserve RR structure is more
adaptive to the overlapping problems. Like the conclusion
drawn in [45], if there is no domain knowledge available, the
conservative method is safer than the aggressive method.

Although the empirical study has shown that high coop-
eration frequency is one of the key factors leading to the
success of CBO on overlapping problems, so far, there has not
been any quantitative measurement of cooperation frequency
to systematically compare among these models. To fill this
gap, a dynamic quantitative measurement and corresponding
analysis are given in the supplementary material.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to solve the difficulties of
optimizing large-scale overlapping problems by CCEA. This
goal has been successfully achieved by proposing a new CCEA
called CBCCO. Specifically, the two novel components of
CBCCO, the decomposition method CBD and the optimization
framework CBO, have shown great effectiveness and effi-
ciency when decomposing and optimizing the problems re-
spectively. Compared with the greedy decomposition method,
using CBD can bring significant improvement when there is
a considerable difference among the importance of subcom-
ponents. CBO also shows the optimizing speed advantage
compared with other CC optimization frameworks. Combining
these two components together, the effectiveness and efficiency
of CBCCO is further strengthened. The empirical comparisons
with the state-of-the-art algorithms, including CSO, LLSO,
SHADEILS, RDG3, DCC, FEA, and CCAS have showed that
CBCCO can be much better than them for solving large-scale
overlapping problems.

Although CBCCO has achieved very promising results in
this paper, it still has potential to be better. The existing
decomposition methods including CBD still encounter the
interference problem that the optimization of one subcom-
ponent would largely affect the other subcomponents. Since
whether the problem is conforming or conflicting is usually
unknown to us, developing new decomposition methods that
can reduce the interference is a promising direction for future
research. Catering to different decomposition methods, there
should be more studies on the contribution-based optimization
framework as well to further accelerate the optimizing speed.

REFERENCES

[1] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-
scale global continues optimization: A survey,” Inf. Sci., vol. 295, pp.
407–428, 2015.

[2] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, and Z. Zhu, “A
survey on cooperative co-evolutionary algorithms,” IEEE Trans. Evol.
Comput., vol. 23, no. 3, pp. 421–441, 2018.

[3] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,
and Z. Yang, “Benchmark functions for the cec’2008 special session
and competition on large scale global optimization,” Nature Inspired
Comput. Appl. Lab., USTC, China, vol. 24, 2007.

[4] Q. Yang, W.-N. Chen, J. Da Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large-scale optimization,” IEEE
Trans. Evol. Comput., vol. 22, no. 4, pp. 578–594, 2017.

[5] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Trans. Cybern., vol. 45, no. 2, pp. 191–204, 2014.

[6] D. Molina, A. LaTorre, and F. Herrera, “Shade with iterative local search
for large-scale global optimization,” in Proc. CEC. IEEE, 2018, pp.
1–8.

[7] D. Molina and F. Herrera, “Iterative hybridization of de with local search
for the cec’2015 special session on large scale global optimization,” in
Proc. CEC. IEEE, 2015, pp. 1974–1978.

[8] M. A. Potter and K. A. D. Jong, “Cooperative coevolution: An archi-
tecture for evolving coadapted subcomponents,” Evol. Comput., vol. 8,
no. 1, pp. 1–29, 2000.

[9] M. A. Potter, “The design and analysis of a computational model of
cooperative coevolution,” Ph.D. dissertation, Citeseer, 1997.

[10] K. A. De Jong and M. A. Potter, “Evolving complex structures via
cooperative coevolution.” in Proc. Evol. Program., 1995, pp. 307–317.

[11] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimiza-
tion using cooperative coevolution with variable interaction learning,” in
Proc. PPSN. Springer, 2010, pp. 300–309.

[12] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution
with differential grouping for large scale optimization,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 378–393, 2013.

[13] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-
and-conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Trans. Math. Softw., vol. 42, no. 2, p. 13, 2016.

[14] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “Dg2: A
faster and more accurate differential grouping for large-scale black-box
optimization,” IEEE Trans. Evol. Comput., vol. 21, no. 6, pp. 929–942,
2017.

[15] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposition
method for large scale continuous optimization,” IEEE Trans. Evol.
Comput., vol. 22, no. 5, pp. 647–661, 2017.

[16] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta
grouping for large scale non-separable function optimization,” in Proc.
CEC. IEEE, 2010, pp. 1–8.

[17] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, “Cooperative co-evolution
for large scale optimization through more frequent random grouping,”
in Proc. CEC. IEEE, 2010, pp. 1–8.

[18] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Trans. Evol. Comput., vol. 16, no. 2, pp. 210–
224, 2011.

[19] Y.-H. Jia, W.-N. Chen, T. Gu, H. Zhang, H.-Q. Yuan, S. Kwong, and
J. Zhang, “Distributed cooperative co-evolution with adaptive computing
resource allocation for large scale optimization,” IEEE Trans. Evol.
Comput., vol. 23, no. 2, pp. 188–202, 2018.

[20] X. Peng, Y. Jin, and H. Wang, “Multimodal optimization enhanced coop-
erative coevolution for large-scale optimization,” IEEE Trans. Cybern.,
vol. 49, no. 9, pp. 3507–3520, 2018.

[21] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong, “A
multiobjective evolutionary algorithm based on decision variable analy-
ses for multiobjective optimization problems with large-scale variables,”
IEEE Trans. Evol. Comput., vol. 20, no. 2, pp. 275–298, 2015.

[22] L. Sun, L. Lin, M. Gen, and H. Li, “A hybrid cooperative coevolution
algorithm for fuzzy flexible job shop scheduling,” IEEE Trans. Fuzzy
Syst., vol. 27, no. 5, pp. 1008–1022, 2019.

[23] A.-M. Farahmand, M. N. Ahmadabadi, C. Lucas, and B. N. Araabi,
“Interaction of culture-based learning and cooperative co-evolution and
its application to automatic behavior-based system design,” IEEE Trans.
Evol. Comput., vol. 14, no. 1, pp. 23–57, 2009.

[24] N. R. Sabar, J. Abawajy, and J. Yearwood, “Heterogeneous cooperative
co-evolution memetic differential evolution algorithm for big data op-
timization problems,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp.
315–327, 2016.

[25] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route distance
grouping for large-scale capacitated arc routing problems,” IEEE Trans.
Evol. Comput., vol. 18, no. 3, pp. 435–449, 2013.

[26] C. Liang, C. Chung, K. Wong, and X. Duan, “Parallel optimal reactive
power flow based on cooperative co-evolutionary differential evolution
and power system decomposition,” IEEE Trans. Power Syst., vol. 22,
no. 1, pp. 249–257, 2007.

[27] N. K. Adhikari, S. J. Louis, and S. Liu, “Multi-objective cooperative
co-evolution of micro for rts games,” in Proc. CEC. IEEE, 2019, pp.
482–489.

[28] L. Sun, L. Lin, H. Li, and M. Gen, “Cooperative co-evolution algorithm
with an mrf-based decomposition strategy for stochastic flexible job shop
scheduling,” Mathematics, vol. 7, no. 4, p. 318, 2019.

[29] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach
to function optimization,” in Proc. PPSN. Springer, 1994, pp. 249–257.

IEEE TRANSACTIONS ON CYBERNETICS 14

[30] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, 2004.

[31] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Inf. Sci., vol. 178, no. 15, pp. 2985–
2999, 2008.

[32] ——, “Differential evolution for high-dimensional function optimiza-
tion,” in Proc. CEC. IEEE, 2007, pp. 3523–3530.

[33] G. A. Trunfio, P. Topa, and J. Was, “A new algorithm for adapting
the configuration of subcomponents in large-scale optimization with
cooperative coevolution,” Inf. Sci., vol. 372, pp. 773–795, 2016.

[34] Y. Sun, M. Kirley, and S. K. Halgamuge, “Extended differential grouping
for large scale global optimization with direct and indirect variable
interactions,” in Proc. GECCO. ACM, 2015, pp. 313–320.

[35] Y. Sun, M. N. Omidvar, M. Kirley, and X. Li, “Adaptive threshold
parameter estimation with recursive differential grouping for problem
decomposition,” in Proc. GECCO. ACM, 2018, pp. 889–896.

[36] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-
scale optimization problems with overlapping components,” in Proc.
CEC. IEEE, 2019, pp. 326–333.

[37] W. Zhao, T. H. Beach, and Y. Rezgui, “Optimization of potable water
distribution and wastewater collection networks: A systematic review
and future research directions,” IEEE Trans. Syst., Man, Cybern., Syst.,
vol. 46, no. 5, pp. 659–681, 2015.

[38] L. Tong, X. Zhou, and H. J. Miller, “Transportation network design for
maximizing space–time accessibility,” Transport. Res. B-Meth., vol. 81,
pp. 555–576, 2015.

[39] R. Moeini and M. Afshar, “Arc based ant colony optimization algorithm
for optimal design of gravitational sewer networks,” Ain Shams Eng. J.,
vol. 8, no. 2, pp. 207–223, 2017.

[40] Y.-H. Jia, Y.-R. Zhou, Y. Lin, W.-J. Yu, Y. Gao, and L. Lu, “A
distributed cooperative co-evolutionary cma evolution strategy for global
optimization of large-scale overlapping problems,” IEEE Access, vol. 7,
pp. 19 821–19 834, 2019.

[41] S. Strasser, J. Sheppard, N. Fortier, and R. Goodman, “Factored evo-
lutionary algorithms,” IEEE Trans. Evol. Comput., vol. 21, no. 2, pp.
281–293, 2016.

[42] C. K. Goh, K. C. Tan, D. Liu, and S. C. Chiam, “A competitive and
cooperative co-evolutionary approach to multi-objective particle swarm
optimization algorithm design,” Eur. J Oper. Res., vol. 202, no. 1, pp.
42–54, 2010.

[43] C.-K. Goh and K. C. Tan, “A competitive-cooperative coevolutionary
paradigm for dynamic multiobjective optimization,” IEEE Trans. Evol.
Comput., vol. 13, no. 1, pp. 103–127, 2008.

[44] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Proc. GECCO. ACM, 2011, pp. 1115–1122.

[45] B. Kazimipour, M. N. Omidvar, X. Li, and A. K. Qin, “A sensitivity
analysis of contribution-based cooperative co-evolutionary algorithms,”
in Proc. CEC. IEEE, 2015, pp. 417–424.

[46] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “Cbcc3—a
contribution-based cooperative co-evolutionary algorithm with improved
exploration/exploitation balance,” in Proc. CEC. IEEE, 2016, pp. 3541–
3548.

[47] G. A. Trunfio, “Adaptation in cooperative coevolutionary optimiza-
tion,” in Adaptation and Hybridization in Computational Intelligence.
Springer, 2015, pp. 91–109.

[48] M. Yang, M. N. Omidvar, C. Li, X. Li, Z. Cai, B. Kazimipour, and
X. Yao, “Efficient resource allocation in cooperative co-evolution for
large-scale global optimization,” IEEE Trans. Evol. Comput., vol. 21,
no. 4, pp. 493–505, 2016.

[49] F.-M. De Rainville, M. Sebag, C. Gagné, M. Schoenauer, and D. Lauren-
deau, “Sustainable cooperative coevolution with a multi-armed bandit,”
in Proc. GECCO, 2013, pp. 1517–1524.

[50] X. Y. Zhang, Y. J. Gong, Y. Lin, J. Zhang, S. Kwong, and J. Zhang,
“Dynamic cooperative coevolution for large scale optimization,” IEEE
Trans. Evol. Comput., 2019.

[51] X. Wen, W.-N. Chen, Y. Lin, T. Gu, H. Zhang, Y. Li, Y. Yin, and
J. Zhang, “A maximal clique based multiobjective evolutionary algo-
rithm for overlapping community detection,” IEEE Trans. Evol. Comput.,
vol. 21, no. 3, pp. 363–377, 2016.

[52] W.-N. Chen, Y.-H. Jia, F. Zhao, X.-N. Luo, X.-D. Jia, and J. Zhang, “A
cooperative co-evolutionary approach to large-scale multisource water
distribution network optimization,” IEEE Trans. Evol. Comput., 2019.

[53] E. Walraven, M. T. Spaan, and B. Bakker, “Traffic flow optimization: A
reinforcement learning approach,” Eng. Appl. Artif. Intel., vol. 52, pp.
203–212, 2016.

[54] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China,
“Benchmark functions for the cec 2013 special session and competition
on large-scale global optimization,” gene, vol. 7, no. 33, p. 8, 2013.

[55] N. Hansen and A. Ostermeier, “Adapting arbitrary normal mutation
distributions in evolution strategies: The covariance matrix adaptation,”
in Proc. IEEE intl. conf. evol. comput. IEEE, 1996, pp. 312–317.

[56] N. Hansen, “The cma evolution strategy: a comparing review,” in
Towards a new evol. comput. Springer, 2006, pp. 75–102.

[57] W. Chen and K. Tang, “Impact of problem decomposition on cooperative
coevolution,” in Proc. CEC. IEEE, 2013, pp. 733–740.

[58] N. Hansen and S. Kern, “Evaluating the cma evolution strategy on
multimodal test functions,” in Proc. PPSN. Springer, 2004, pp. 282–
291.

	Introduction
	Background
	Large-scale Problem with Overlapping Subcomponents
	Cooperative Co-evolution
	Decomposition
	Optimization

	Contribution-based Cooperative Co-evolution for Overlapping Problems
	Contribution-based Decomposition
	Non-shared Variable Allocation
	Shared Variable Allocation

	Contribution-based Optimization
	Discussions
	Contribution-based Decomposition
	Contribution-based Optimization

	Experimental Setup
	Benchmark
	Parameter Setting

	Comparisons and Analyses
	Comparisons with State-of-the-art Algorithms
	Analysis of CBD
	Comparison between CBD and Greedy Decomposition
	Condition of the Effectiveness of CBD

	Analysis of CBO

	Conclusions and Future Work
	References

