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Abstract—The development of electric vehicle techniques has
led to a new vehicle routing problem called capacitated electric
vehicle routing problem (CEVRP). Because of the limited number
of charging stations and the limited cruising range of electric
vehicles, not only the service order of customers but also the
recharging schedules of electric vehicles should be considered.
However, solving these two aspects of the problem together is
very difficult. To address the above issue, we treat CEVRP as
a bi-level optimization problem and propose a novel bi-level
ant colony optimization algorithm in this paper, which divides
CEVRP into two levels of sub-problem: 1) capacitated vehicle
routing problem and 2) fixed route vehicle charging problem. For
the upper-level sub-problem, the electricity constraint is ignored
and an order-first split-second max-min ant system algorithm is
designed to generate routes that fulfill the demands of customers.
For the lower-level sub-problem, a new effective heuristic is
designed to decide the charging schedule in the generated routes
to satisfy the electricity constraint. The objective values of the
resultant solutions are used to update the pheromone information
for the ant system algorithm in the upper level. Through good
orchestration of the two components, the proposed algorithm
can significantly outperform state-of-the-art algorithms on a wide
range of benchmark instances.

Index Terms—Electric Vehicle Routing Problem, Capacitated
Vehicle Routing Problem, Vehicle Charging Problem, Ant Colony
Optimization, Combinatorial Optimization.

I. INTRODUCTION

TRANSPORTATION has been one of the main sources
of greenhouse gas emission for decades [1]. Recently,

the rapid development of electric vehicles (EVs) has provided
an applicable alternative to conventional fossil-fueled vehicles
[2], [3]. According to [4], replacing conventional vehicles
with EVs can contribute a lot to the reduction of greenhouse
gas emissions. Considering the increasingly dire environmen-
tal problems and governmental policies [5], many logistics
companies like DHL, JD, and FedEx have started using EVs
instead of conventional fossil-fueled vehicles in their delivery
businesses [6], [7].

From the academic perspective, the services provided by
logistics companies are usually modeled as vehicle routing
problems (VRPs). In the past several decades, there are many
different variants of VRP that have been extensively studied
[8]–[12], such as capacitated VRP (CVRP) [13], [14], VRP
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with time window [9], [15], VRP with pickup and delivery
[12], multi-objective VRP [16], [17], and dynamic VRP [10].
Most of these variants are built based on conventional vehicles.
Since the cruising range of conventional vehicles is quite
long and gas stations are widespread in modern cities, the
refueling problem is usually not considered in these traditional
VRPs. However, the cruising range of EVs cannot match
conventional vehicles yet and there are not many charging
stations even in the urban area of a city at present [18]. These
problems make it much harder to manage a fleet of EVs
than conventional vehicles, leading to a new category of VRP
called electric VRP (EVRP) [19]. In EVRP, two aspects should
be considered: 1) the service order of customers and 2) the
recharging schedule of each vehicle. Since these two aspects
are highly interdependent, most of the existing methods for
traditional VRPs cannot be directly applied to EVRPs.

EVRP is a quite new subject. Most of the existing studies
focus on proposing and defining new problem models, such
capacitated EVRP (CEVRP) [6], EVRP with time window
(EVRPTW) [19], [20], EVRP with pickup and delivery [21],
EVRP with non-linear charging [22], and EVRP with shared
charging stations [23]. Compared with proposing problems,
the effort that was spent on designing algorithms is relatively
little. Therefore, most of these problems have not been ex-
tensively studied. Throughout the research history of VRP,
we know that sufficient research of the fundamental CVRP
will benefit the other variants a lot. Following the same path,
CEVRP is studied in this paper as the basic EVRP model to
contribute to the fundamental research of EVRP [6]. Following
the definition of traditional CVRP, the objective of CEVRP is
also defined as the minimization of the total travel distance of
EVs. EVs depart from the depot to serve the customers. Every
customer should be served exactly once. Each EV cannot be
overloaded or run out of electricity during its journey. If a
vehicle cannot finish the journey by only using the initial
electricity, it can recharge its battery in charging stations. After
serving all customers, all EVs should go back to the depot.

So far, most of the existing methods proposed to solve
EVRPs fall into two categories. In the first category, scholars
transferred the EVRPs into mixed integer linear program-
ming (MILP) problems and applied commercial software
like CPLEX [24] to solve them [25], [26]. The commercial
software can generate very good solutions on small-scale
problems, but the high computational complexity makes them
inefficient on larger problems with more than 50 customers
[22]. Individual-based meta-heuristic algorithms [27] are the
second category of algorithms, including variable neighbor-
hood search (VNS) [20], iterative local search (ILS) [28],
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[29], and adaptive large neighborhood search (ALNS) [30],
[31]. These algorithms can be efficient but the quality of the
final solution highly depends on the perturbation and the local
search operators that are applied. Also, since there is only one
solution under operation, these algorithms are sensitive to the
quality of the initial solution. If the applied operators are not
appropriate or the initial solution is not good, the algorithm is
easy to be trapped into poor local optima [27].

Ant colony optimization (ACO) algorithms have been
proven effective for many routing problems like traveling
salesman problem (TSP) [32], [33], VRPs [34], and arc routing
problems (ARPs) [35]. As a population-based meta-heuristic
algorithm, ACO has better adaptability than the individual-
based meta-heuristic algorithms since it does not depend on
specific perturbation or local search operators, and it is less
sensitive to the initial solution [36], [37]. Among several
ACO variants [38]–[40], the max-min ant system (MMAS)
is adopted in this paper because of its better capability than
the others [36].

However, directly using MMAS to generate a integrated so-
lution containing both service orders and recharging schedules
for CEVRP is difficult. Guo et al. [41] and Shao et al. [42]
have tried to solve the two aspects of EVRP simultaneously
by encoding the customer order and charging station order
together in their genetic algorithms (GAs). However, this
encoding scheme leads to a huge search space and also the
traditional local search methods like 2-opt cannot be applied
since they cannot handle the routes with charging stations.
These drawbacks make the proposed GAs ineffective on large-
scale EVRPs.

Considering these drawbacks, we solve CEVRP in a way
of bi-level optimization in this paper. The main contributions
are:
• A bi-level ACO (BACO) is designed by considering

CEVRP as a bi-level optimization problem, in order to
reduce the search space and focus more on the promising
regions. The sub-problems of the two levels are CVRP
and fixed route vehicle charging problem (FRVCP), cor-
responding to the service order of customers and the
recharging schedules of vehicles.

• An order-first split-second MMAS (OS-MMAS) algo-
rithm is proposed to generate capacity-feasible routes for
the upper-level sub-problem CVRP, deciding the service
order of customers.

• A new heuristic method called removal heuristic (RH)
is designed to solve the lower-level sub-problem FRVCP,
deciding the recharging schedules of vehicles. The fitness
values of the integrated solutions after inserting charging
stations will be used to update the pheromone information
of OS-MMAS. In addition, based on RH, a restricted
enumeration method is further proposed to refine the
recharging schedule of the final solution.

The rest of this paper is organized as follows. Section II
gives the formal description of CEVRP. Then, Section III
shows the related works. The proposed algorithm BACO is
explained in Section IV. Finally, the experimental studies are
conducted in Section V and the conclusions are drawn in
Section VI.

II. PROBLEM DEFINITION

Given a fleet of homogeneous EVs, the goal of CEVRP
is to find an optimal set of routes that minimize the total
traveling distance subject to several constraints. CEVRP can
be formally defined on a fully connected weighted undirected
graph G = (V,E). V = {0} ∪ I ∪ F̂ represents the set of
nodes in the graph. 0 is the index of the depot. I represents
the customers. Each customer i has a fixed cargo demand
ci. F̂ is an extended set of charging stations that contains
βi copies of each charging station i ∈ F . The creation of
the copies of charging stations allows each charging station
to be visited multiple times [43]. βi is set to 2|I| since in
the worst case, each EV needs to visit each station once on
both ways to serving a customer and returning to depot [44].
E = {(i, j)|i, j ∈ V, i 6= j} is the set of arcs. Each arc (i, j)
is associated with a weight representing the distance between
i and j, denoted as dij . Each EV has a maximum capacity
of cargo demand C and a maximum battery capacity Q. The
consumption rate of the battery is denoted as h. For each arc
(i, j), an EV will consume the amount h · dij of the battery
to traverse it. Through introducing two more variables ui and
yi that respectively represent the remaining carrying capacity
and remaining battery level of an EV when it arrives at node
i ∈ V , the mathematical definition of CEVRP is given in [6]
as follows:

min f(x) =
∑

i∈V,j∈V,i6=j

dijxij , (1)

s.t. ∑
j∈V,i6=j

xij = 1,∀i ∈ I, (2)∑
j∈V,i 6=j

xij ≤ 1,∀i ∈ F̂ , (3)∑
j∈V,i 6=j

xij −
∑

j∈V,i6=j

xji = 0,∀i ∈ V, (4)

uj ≤ ui − cixij + C(1− xij),∀i ∈ V,∀j ∈ V, i 6= j, (5)
0 ≤ ui ≤ C, ∀i ∈ V, (6)

yj ≤ yi − hdijxij +Q(1− xij),∀i ∈ I, ∀j ∈ V, i 6= j, (7)

yj ≤ Q− hdijxij ,∀i ∈ F̂ ∪ {0},∀j ∈ V, i 6= j, (8)
0 ≤ yi ≤ Q,∀i ∈ V, (9)

xij ∈ {0, 1},∀i ∈ V,∀j ∈ V, i 6= j. (10)

The objective (1) of the problem is to minimize the total
travel distance of all EVs. Constraint (2) stipulates that every
customer should be served only once. Constraint (3) indicates
that a charging station can be visited multiple times. Constraint
(4) guarantees that every EV must leave each customer served
by it. Constraints (5) and (6) stipulate that EVs cannot be
overloaded during their journeys. We call this constraint “ca-
pacity constraint” in this paper. Constraints (7), (8), and (9)
stipulate that EVs cannot run out of electricity during their
journeys. Correspondingly, we call this constraint “electricity
constraint”. Constraint (10) defines the domain of xij . If the
arc (i, j) is traveled by an EV, xij equals to one, otherwise, it
equals to zero. Despite the explicit constraints displayed by the
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Fig. 1. An example solution of CEVRP with two routes.

formulas, the formulas also imply that all EVs should depart
from and return to the depot. Also, the constraints (7), (8),
and (9) assume that EVs are always fully charged in charging
stations. It should be noted that the CEVRP studied in this
paper is exactly the EVRP proposed in [6], but, to conform to
the nomenclature of traditional VRPs, the word “capacitated”
is added to the name representing the capacity constraint. Fig.
1 shows an example consisting of two routes. An EV visits
the charging station twice during its journey, and another EV
does not visit any charging station.

III. RELATED WORKS

In this section, the methods proposed to solved EVRPs are
reviewed. The predecessor of EVRP is Green VRP (GVRP)
[43], which is a routing model for alternative fuel vehicles.
Based on GVRP, scholars in the operations research com-
munity and transportation research community replaced the
alternative fuel vehicles with EVs and started to study EVRP.

A popular method to handle EVRPs is to model EVRPs
as MILP problems and use commercial software such as
CPLEX and Gurobi to solve them. Lin [25] used CPLEX
to solve an EVRP with the influence of vehicle load on
energy consumption. The objective was to minimize the total
money cost of delivery including the driver’s hourly wage and
the charging cost. A scenario containing only 13 customers
was tested. Montoya et al. [22] proposed a variant called
EVRP with non-linear charging that adopted different kinds
of charging stations. Also, the recharging process is modeled
as a non-linear function. They tried to use Gurobi to solve
the problem but found it could only solve the problems
with less than 50 customers within the given time. Chen et
al. [21] proposed a mixed-integer quadratically constrained
programming model for the EVRP with pick and delivery
and used CPLEX to solve the problem, but the test case only
considered less than 20 customers. Xiao et al. [45] focused on
developing the energy consumption model to an EVRPTW to
minimize the total cost like [25]. Also, the experiments showed
that only the cases with less than 30 customers could be solved
by CPLEX in the given time. Although using mathematical
programming methods to solve the problem is an easy way
to get high-quality solutions, the experiments in the literature
show that those methods are not efficient enough to solve the
problems with more than 50 customers due to the high time
complexity.

Individual-based meta-heuristic algorithms were also widely
adopted to solve EVRPs, such as VNS, ILS, and ALNS. VNS
is the first one that was applied to EVRP. In 2014, both

Afroditi et al. [19] and Schneider et al. [20] proposed their
EVRPTW models. Schneider proposed a VNS heuristic with
a tabu search method to solve the problem. Following their
researches, Bruglieri et al. [46], [47] changed the objective
of EVRPTW from the total traveling distance to the total
time. They combined VNS with a local branching method
to solve the problem. Recently, Woller et al. proposed a
VNS algorithm that won the IEEE WCCI2020 competition
on EC for the EVRP [6]. Regarding ILS, Zhang et al. [29]
modeled the energy consumption of an EV by considering
many factors and proposed an ILS algorithm using ACO as
the perturbation operator to solve the problem. Generally,
ACO is recognized as a population-based meta-heuristic, but
in their algorithm, there is only one ant. Thus, it is still
an individual-based algorithm rather than a population-based
algorithm. Besides using Gurobi, Montoya et al. [22] also
proposed an ILS algorithm to solve the EVRP with non-linear
charging. Following Montoya’s work, Froger et al. [44] further
improved the model and the heuristic algorithm for FRVCP,
but still used the same routes generated by the previous ILS
algorithm. ALNS is another popular individual-based meta-
heuristic algorithm. Keskin and Çatay [31], [48] proposed
their EVRPTW models by considering the partial recharging
situation and different objectives. Both works applied the
same ALNS algorithm. Koç et al. [23] considered a situation
where several companies jointly invest in charging stations
and proposed the problem EVRP with shared charging stations
(EVRP-SCS). The EVRP-SCS includes not only the routing
of EVs but also locating the charging stations. They used
ALNS and CPLEX to solve different parts of the problems.
Generally, those individual-based meta-heuristic algorithms
typically solved the problems effectively, but the performance
highly depends the applied perturbation/destruction operators
and local search methods, which are problem-dependent. De-
signing these operators and methods needs high expertise. If
the applied perturbation/destruction operators and local search
methods are not appropriate, the algorithm would encounter
the premature convergence problem frequently especially for
the large and complex problems [27]. Also, the quality of the
initial solution has a big influence to the final solution that
should be carefully generated.

Considering the good adaptability of evolutionary computa-
tion (EC), several scholars also tried to used EC algorithms to
solve EVRPs. Liu et al. [49] proposed a differential evolution
algorithm to solve an EV charging scheduling problem, but
different from the previous works, it mainly focused on the
charging scheduling of EVs from point to point rather than
serving a set of costumers. Guo [41] and Shao [42] proposed
two GAs to solve the EVRPTW. To decide the customer
order and the recharging order simultaneously, Guo encoded
the customers and the stations together in GA and made an
unrealistic assumption that each station can only be visited
once. This assumption makes the algorithm only be applicable
to some specific small-scale problems. Shao addressed this
issue by setting copies to each station, but this behavior led
to another severe issue of huge and redundant search space.

Overall, we have found that the state-of-the-art approaches
to EVRPs still have limitations. The mathematical methods
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Fig. 3. Components of BACO and their relationships with the sub-problems.

are currently not efficient enough to solve EVRPs with more
than 50 customers. Individual-based meta-heuristic algorithms
are easy to be trapped into local optima if the perturba-
tion/destruction operators, local search methods, and initial
solution generation methods are not elaborately designed.
EC algorithms have not incorporated a good way to handle
both the customer order and recharging order simultaneously.
Considering these drawbacks, in this paper, we propose a bi-
level algorithm named BACO to solve the CEVRP.

IV. BI-LEVEL ANT COLONY OPTIMIZATION

In this section, we first give the overall process of BACO.
Then, the three components of BACO including the OS-
MMAS for the upper-level CVRP, the RH for the lower-
level FRVRP, and the final solution refinement procedure are
described. Finally, the theoretical time complexity and the
design philosophy of the algorithm are analyzed.

A. Process of BACO

The overall process of BACO is shown in Fig. 2. As
the flowchart shows, the components and parameters of the
algorithm are initialized in the first place. Then, in every
generation, n = |I|+ 1 ants build their solutions one by one.
The generated solutions are evaluated to update the global best
solution, the iteration best solution, the pheromone boundaries,
and the pheromone matrix. If the stopping criterion is met,
an restricted enumeration method is applied to the global
best solution to make a final refinement. Finally, the whole
algorithm ends and returns the global best solution.

Fig. 3 demonstrates the bi-level structure of CEVRP and the
relationship with BACO. Corresponding to the two levels of
sub-problems, it takes two steps to generate a feasible solution
in BACO. First, the CEVRP is degraded to a corresponding
CVRP by removing the electricity constraint and charging sta-
tions. Considering only depot and customers, the OS-MMAS
algorithm is applied to generate the capacity-feasible routes
of the corresponding CVRP. Then, given the capacity-feasible
routes, we take the electricity constraint into consideration.
The problem of finding the optimal recharging schedule for a
fixed route is called FRVCP. To solve FRVCP effectively and
efficiently, the RH algorithm is proposed.

After generating the solutions, the objective values are
evaluated to update the global best solution and the pheromone
matrix. RH is a deterministic algorithm. It provides a single-
value mapping relationship between the routes of the corre-
sponding CVRP and the fitness values of the CEVRP. Thus, we
can directly use the fitness values of the solutions to update the
pheromone matrix of OS-MMAS. The formulation of the two
sub-problems and their relationships with CEVRP are further
analyzed in the supplemental material to show how BACO
treats the problem in a bi-level way.

B. OS-MMAS for Route Construction

Pheromone Setting: In OS-MMAS, a pheromone matrix
is maintained to guide the ants to construct the routes. At
first, we generate the routes for the corresponding CVRP
without considering the charging stations. Thus, the size of
the pheromone matrix Φ is n × n where n = |I| + 1 is
the total number of customers plus the depot. Each element
ϕij ∈ Φ represents the pheromone value of traveling from i to
j. Since the applied ACO algorithm is MMAS [40], there are
two boundaries ϕmin and ϕmax of the pheromone values that
are used to maintain the exploration ability of the algorithm,
ϕmin ≤ ϕij ≤ ϕmax. The values of these two boundaries are
[40]:

ϕmax =
1

(1− ρ) · f(xgb)
, (11)

ϕmin =
ϕmax(1− n

√
pr)

(n/2− 1) n
√
pr
, (12)

where ρ is the parameter used to control the pheromone
evaporation speed. xgb is the global best solution. pr is a
parameter that is usually set to 0.05. To generate the initial xgb,
in BACO, the convex hull insertion method is firstly applied
to generate a giant tour. Then, this giant tour is split into a set
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of capacity-feasible routes. Afterward, these routes are fixed
to be an electricity-feasible solution by RH. The value of the
initial pheromone ϕ0 is set equal to the value of ϕmax.

Route Construction: The route construction process of OS-
MMAS is shown in Algorithm 1, which can be divided into
two sub-processes: the order-first sub-process to generate a
giant tour (line 1-11) and the split-second sub-process to split
the tour into capacity-feasible routes (line 12-30).

First, the giant tour r is initialized empty and a set Î
containing the depot and the customers is maintained (line
1). A random node is selected from Î as the starting point.
It is added into the tour r and removed from Î (line 2-4).
The remain nodes in Î will be chosen one by one until the
complete tour is constructed (line 5-10). In each step, the next
node j is selected from Î through the roulette wheel selection
strategy (line 7). The probability of going to j from the current
node i is [40]:

pij =
ϕαij/d

β
ij∑

l∈Is ϕ
α
il/d

β
il

, if j ∈ Î (13)

where α and β are two parameters to balance the importance
between the pheromone value and the distance value. From
(13), we can know that the node with larger pheromone
value and shorter distance from i is preferred. Afterward, this
selected node j is added into the tour r and removed from
Î (line 8-9). When all customers and the depot have been
selected, we rotate r to let the depot be the first node in the
tour (line 11).

Then, the tour r is split into several capacity-feasible routes
by using the split algorithm proposed in [50]. Given a tour
r starting from depot 0, the splitting algorithm maintains two
values Vi and Pi for each node ri representing the minimum
total distance of all generated routes until ri and the index
of its predecessor in the route (line 12). Through two nested
loops (line 13-29), the algorithm finds the predecessor for each
node that leads to the minimum overall distance which equals
V|I|. Then, from the last node in r, all routes can be generated
through a backtrace process (line 30). Essentially, the splitting
algorithm enumerates all capacity-feasible routes and finds the
best segmentation of the giant tour.

After generating all routes, the 2-opt algorithm is applied
as the local search method to each route to further improve
the solution (line 31).

Pheromone Updating: After obtaining the set of routes, the
recharging schedules of the routes will be determined to obtain
a feasible solution of the original CEVRP. The process of
inserting charging stations into the routes will be introduced
later. At the end of each iteration, these feasible solutions
will be evaluated. The iteration best solution xib and the
corresponding giant tour rib are recorded. If the iteration best
xib is better than the global best xgb, xgb will be updated. ϕmax
and ϕmin will be also updated according to (11) and (12). The
pheromone matrix is updated according to:

ϕij(t+ 1) = ρ · ϕij(t) + ∆ϕbest
ij , (14)

∆ϕbest
ij =

{
1/f(xib) if xij == 1,

0 otherwise.
(15)

Algorithm 1 Route Construction
Input: pheromone matrix Φ, arc set E, customer set I ,

maximum capacity C.
Output: a set of capacity-feasible routes Γ

1: initialize r empty; Î = {0} ∪ I; //order-first
2: Randomly select a node i in Î;
3: append i to r;
4: remove i from Î;
5: while Î is not empty do
6: take the last node i in r;
7: j = roulette wheel selection(Î , i);
8: append j to r;
9: remove j from Î;

10: end while
11: let r0 = 0 by rotating r;
12: V0 = 0;V1→|I| = +∞;P0→|I| = 0; //split-second
13: for i = 1→ |I| do
14: j = i; tc = 0; td = 0;
15: repeat
16: tc = tc+ crj ;
17: if i == j then
18: td = d0,rj + drj ,0;
19: else
20: td = td− d0,rj−1

+ drj−1,rj + drj ,0;
21: end if
22: if tc ≤ C then
23: j = j + 1;
24: if Vi−1 + td < Vj then
25: Vj = Vi−1 + td;Pj = i− 1;
26: end if
27: end if
28: until j > |I| or tc > C
29: end for
30: Γ = back trace(P0→|I|, r);
31: Do local search on each route Γ ∈ Γ;
32: return Γ;

C. Removal Heuristic for Fixed Route Vehicle Charging

After the route construction, some routes are not electricity-
feasible. We need to insert charging stations into these routes
to make them electricity-feasible. To this end, a new heuristic
algorithm called RH is proposed to solve the lower-level sub-
problem FRVCP, which is shown in Algorithm 2. It can be
divided into two stages: inserting (line 1-6) and removing (line
7-23).

In the inserting stage, between each pair of successive nodes
Γi and Γi+1, a station s that brings minimum extra traveling
distance is found and inserted (line 2-6). The electricity con-
straint is considered so that the resultant route Γ is electricity-
feasible after the inserting stage (line 3).

Then, in the removing stage, we remove redundant stations
one by one. For each station s in Γ (line 9), we first judge
whether Γ would be still electricity-feasible after removing s
(line 11). If it can be removed without violating the electricity
constraint, we record the distance saved by removing this
station (line 12-15). After checking all the stations, the station
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Algorithm 2 Removal-Heuristic
Input: a route Γ ∈ Γ starting and ending at 0 that is not

electricity-feasible, arc set E, customer set I , charging
station set F , maximum battery capacity Q, battery con-
sumption rate h.

Output: an electricity-feasible route Γ
1: D = Q/h; k = |Γ |; ld = D;
2: for i = 0→ k − 2 do
3: s = argminl∈F dΓi,l + dl,Γi+1 s.t. dΓi,l < ld;
4: insert s between Γi and Γi+1;
5: ld = D − ds,Γi+1

;
6: end for
7: while Γ contains charging stations do
8: ds′ = 0; s′ = 0;
9: for each station s in Γ do

10: denote the index of s as ps;
11: if Γ is electricity-feasible after removing s then
12: ds = dΓps−1,s + ds,Γps+1

− dΓps−1,Γps+1
;

13: if ds′ < ds then
14: s′ = s; ds′ = ds;
15: end if
16: end if
17: end for
18: if ds′ 6= 0 then
19: remove s′ from Γ ;
20: else
21: break;
22: end if
23: end while
24: return Γ ;

0 1 2 3 5 0

6 7 7 8 9

0 1 2 3 5 0

7 8

Inserting

0 1 2 3 5 0

Removing

Fig. 4. Process of the removal heuristic.

that can be legally removed and bring maximal distance saving
is removed (line 18-19). If there is no station that can be
removed, the whole process stops and returns the electricity-
feasible route Γ .

An example is shown in Fig. 4 to demonstrate RH. Given
a route (0,1,2,3,5,0), in the inserting stage RH first inserts
five charging stations (6, 7, 7, 8, 9) to the route between each
pair of successive nodes. Then, in the removing stage, three
stations are removed and only two stations are reserved.

D. Restricted Enumeration Method

Since FRVCP is also a NP-hard problem [22], it is too
expensive to enumerate all the recharging schedules. As a
heuristic method, RH is efficient but cannot guarantee the op-
timal recharging schedule. To further improve the final global
best solution, we design a restricted enumeration method based
on the solution obtained by RH. Specifically, for each route,
it is reasonable to consider that the optimal solution tends to
have no more charging station visits than the solution obtained
by RH, as more visits tends to cause extra cost. Therefore, the
restricted enumeration method only examine the solutions that
have no more charging stations than the solution obtained by
RH. Given any pair of nodes i and j, we can further filter
out some charging stations that are obviously not considered
by the optimal solution. Borrowing the concept from multi-
objective optimization, we define the “dominance” relationship
between two stations as follow.

Definition 1. Given two nodes i and j, a station s1 is said to
dominate another station s2, if and only if:

((di,s1 ≤ di,s2) ∧ (ds1,j < ds2,j))∨
((di,s1 < di,s2) ∧ (ds1,j ≤ ds2,j)) (16)

Based on the dominance relationship, we only need to con-
sider the non-dominated stations between i and j. According
to the above analysis, the restricted enumeration algorithm is
given in Algorithm 3.

First, taking the electricity-feasible route Γ generated by
RH, we count how many stations are in Γ , denoted as ub
(line 1). Then, the non-dominated stations between each pair of
successive nodes Γi and Γi+1 are found and stored in Πi (line
3-6). After getting the upper bound and the non-dominated
station list, we use the function enumerate(Γ ′, sn,Π) to
enumerate all possible recharging schedules containing sn
charging stations chosen from Π (line 7-8). Whenever a better
solution is found, Γ is updated (line 9-11). Due to the page
limit, the detailed pseudo code about the function enumerate
is given in the supplemental material.

E. Discussion

1) Time Complexity Analysis: The time complexity of
BACO is analyzed in a top-down way. First, the complexity
of the whole algorithm can be shown as O(X · Ngen + Y ),
where Ngen, O(X), and O(Y ) represent the number of gen-
erations, the time complexity of one generation, and the time
complexity of the restricted enumeration method, respectively.

From Fig. 2 we can know that there are three operations in
each generation of BACO, 1) generating n sets of capacity-
feasible routes, 2) deciding the recharging schedules for these
routes, and 3) updating the pheromone matrix. The time com-
plexity of the first operation is O(n · (n2 +q ·n)) where O(n2)
is the time complexity of generating a giant tour and O(q · n)
is the complexity of splitting [50], q = C/(

∑
i∈I ci/|I|). For

the second operation, suppose there are m = |F | stations (the
copies of the stations are not considered in our algorithm), the
time complexity is O(n · (m ·n+n2)) where O(m ·n+n2) is
the time complexity of RH. The time complexity of the third
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Fig. 5. Process of generating a solution in BACO.

Algorithm 3 Restricted Enumeration Method
Input: the global best solution Γ, arc set E, customer set

I , charging station set F , maximum battery capacity Q,
battery consumption rate h.

Output: refined global best solution Γ
1: for each Γ ∈ Γ do
2: count how many stations are in Γ as ub;
3: Γ ′ = Γ.remove all stations();
4: k = |Γ ′|; Π = {Π0, . . . ,Πk−1};
5: for i = 0→ k − 1 do
6: Πi = find non dominated stations(Γ ′i , Γ

′
i+1);

7: end for
8: for sn = 1→ ub do
9: Γ ′′ = enumerate(Γ ′, sn,Π);

10: if Γ ′′ is better than Γ then
11: Γ = Γ ′′;
12: end if
13: end for
14: end for
15: return Γ;

operation is O(n2). Adding these three components together,
we can get O(X) = O(n2 · (2n+ q +m+ 1)).

Since for the worst case, the restricted enumeration method
still needs to enumerate all the possible solutions, its the-
oretical time complexity is O((m · n)n) that is very high.
However, practically, a vehicle will only recharge the battery
less than five times in its journey and the number of non-
dominated charging stations between two successive customers
is usually less than or equal to three. Thus, the real time
complexity of the restricted enumeration method is smaller
than O(Y ) = O((3n)4).

Overall, the time complexity of BACO is O(n2 · (2n+ q+
m + 1) ·Ngen + (3n)4) = O(n2 · (n + q + m) ·Ngen + n4).
Since in most cases q � n and m� n, the time complexity
of BACO is roughly O(n3 ·Ngen + n4).

2) Design Philosophy: The fundamental design philosophy
of BACO is divide-and-conquer which leads to the bi-level
structure as Fig. 5 showing. BACO divides the CEVRP into
two sub-problems, i.e. CVRP and FRVCP, which are both NP-
hard [22]. In BACO, the service order of customers is gener-
ated by OS-MMAS and the charging schedule is generated by
RH. There are two reasons that we design BACO in this way.
• If a meta-heuristic algorithm is applied to solve FRVCP,

there will be two meta-heuristic algorithms corresponding
to the two levels of optimization, which will lead to an
extremely high time complexity. Many studies show that
not only for EVRP [22] but also for some other com-

binatorial optimization problems [51], [52], using meta-
heuristic algorithms in both levels is too computationally
expensive.

• Although both CVRP and FRVCP are NP-hard problem,
the high-quality route set of CVRP is the prerequisite for
the success of FRVCP. Also, the number of customers is
usually larger than the number of charging stations which
implies that the complexity of CVRP is higher than the
complexity of FRVCP. Thus, we choose to use a meta-
heuristic algorithm to solve CVRP and use a heuristic
algorithm to solve FRVCP.

The design philosophy of BACO does not mean that FRVCP is
not important. To get a good solution of CEVRP, both CVRP
and FRVCP should be solved successfully.

Generally, by embodying the divide-and-conquer strategy,
BACO has successfully decomposed the search space of
CEVRP into two sub-spaces. For each level of optimization,
the search space is reduced without losing much useful in-
formation, which makes it easier to find a good solution
than directly searching in the whole space. Considering the
complexities of the two sub-problems, the meta-heuristic al-
gorithm OS-MMAS is used to generate good service orders of
customers and defines the promising region of the lower-level
search space. The heuristic algorithm RH decides the charging
schedule of each vehicle, which helps BACO to generate good
solutions without having a high computational complexity.

V. EXPERIMENTS

A. Experimental Setup

1) Benchmark Instances: To investigate the performance of
BACO, a newly-proposed benchmark for the IEEE WCCI2020
competition on EC for the EVRP is adopted [6]. The bench-
mark contains a group of small-scale instances and a group of
large-scale instances. The small-scale group consists of seven
instances, having up to 100 customers. The large-scale group
consists of 10 instances, having up to 1000 customers. These
two groups are derived from [53] and [54], respectively. The
details of the benchmark are shown in Table I.

2) Algorithm Settings: To check the ability of BACO, we
set a fixed execution time on each instance that allows BACO
to converge:

ExeT ime = ϑ · |I|+ |F |
100

(hr), (17)

where ϑ equals 1, 2, and 3 for E22-E101, X143-X916,
and X1001, respectively. Using fixed execution time as the
termination condition is a common way in the research of
combinatorial optimization [55]. BACO is implemented in
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TABLE I
INFORMATION OF THE CEVRP BENCHMARK SET.

Name Customer Depot Station Route
E22 21 1 8 4
E23 22 1 9 3
E30 29 1 6 4
E33 32 1 6 4
E51 50 1 5 5
E76 75 1 7 7
E101 100 1 9 8
X143 142 1 4 7
X214 213 1 9 11
X352 351 1 35 40
X459 458 1 20 26
X573 572 1 6 30
X685 684 1 25 75
X749 748 1 30 98
X819 818 1 25 171
X916 915 1 9 207
X1001 1000 1 9 43

C++ and executed on Intel i7-6700 3.40Hz CPU with the Arch
Linux system. On each instance, BACO is executed 30 times.

We compare BACO with five algorithms, VNS, simulated
annealing (SA), GA, ILS and a single-level MMAS denoted
as SLMMAS. The first three algorithms are the winners of
the IEEE WCCI2020 competition on EC for the EVRP1.
ILS is originally proposed to solve the EVRP with non-
linear charging, but it can be easily used to solve CEVRP
by changing the constraint of working time to the capac-
ity constraint [22]. It uses an order-first split-second ILS
to generate the capacity-feasible routes and uses a greedy-
heuristic (GH) algorithm to insert charging stations. SLMMAS
is implemented by ourselves to demonstrate the advantage of
the bi-level structure of BACO. SLMMAS inserts charging
stations during the construction of a route. Whenever the next
selected customer cannot be reached due to the electricity
constraint, one charging station that brings minimum extra
distance is visited before serving the customer. Since the codes
and papers of the three winners of the competition are not
provided, we directly use the reported results for comparison
including the min, mean, and standard deviation values. Also,
the one-sample t-test is made between BACO and the three
algorithms to check whether their performance is significantly
different. As ILS and SLMMAS, they are also tested 30
independent times on each test case. Their performances are
compared with BACO using Wilcoxon rank-sum test. The
significance level is set to 0.05 with Bonferroni correction.

All the parameters of BACO follow the canonical settings
of MMAS [40]. The population size of BACO is set to
n = |I|+1. The pheromone evaporation speed ρ is set to 0.98.
α and β are set to 1 and 2. For the instances with less than 500
customers, the giant tour is generated just like Algorithm 1.
For the instances with more than 500 customers, a candidate
list Īi is first generated in the initialization phase for each
node. Each list Īi maintains the nearest 20 nodes to node i.
When building the giant tour, the ants will choose the nodes
from the candidate lists rather than the universal set. This
method is widely adopted in ACO algorithms [39], [40]. We

1The performance of the three algorithms can be found on
https://mavrovouniotis.github.io/EVRPcompetition2020/

also investigated the influence of α and β. The experimental
results show that the conventional setting α = 1, β = 2 is a
good choice for BACO. Due to the page limit, this experiment
is provided in the supplemental material.

B. Comparisons on Small-scale Instances

We first compare these algorithms on the small-scale in-
stances. The experimental results are shown in Table II. The
best min and mean values are highlighted. From the results,
we can get the following information:
• According to the statistic test, BACO is only worse than

VNS on E33. On the other instances, BACO either has
equivalent performance to the compared algorithms or
significantly outperforms the other algorithms.

• According to the min objective values, VNS has found the
best known solutions on all the seven instances. BACO
found five out of seven, but on the two instances where
BACO failed find the best known solutions, i.e. E33 and
E101, the gaps between the solutions found by BACO
and VNS are very small.

• The reason of the superiority of BACO on small-scale
instances is that both OS-MMAS and RH are effec-
tive on small-scale instances. OS-MMAS does not rely
on any pre-defined neighborhood structure to generate
routes. For CEVRP, the neighborhood structure is hard
to define since not only the service orders of customers
but also the recharging schedules of vehicles should
be considered. Using OS-MMAS can generate many
different candidate routes for RH, and for small-scale
instances, RH is very effective to find the optimal or a
near-optimal recharging schedule. In contrast, using a pre-
defined neighborhood structure in the individual-based
meta-heuristic algorithms may miss some good solutions.

• Compared with the population-based meta-heuristic algo-
rithms like SLMMAS and GA, the the advantage of the
bi-level optimization structure of BACO is demonstrated
in terms of effectiveness. By decomposing the decision
space, we can use different effective methods to handle
different levels of sub-problems (OS-MMAS for upper-
level, RH for lower-level), and the integrated solutions
generated by solving the two sub-problems are used as
feedback to help OS-MMAS to generated better service
orders of customers. Thus, the effectiveness of BACO
is somewhat guaranteed. However, in SLMMAS, since
the recharging schedules of vehicles are decided along
with the construction of the routes, it may generate bad
recharging schedules and may also cause bad influence
to the decision of the service orders of customers, which
leads to its poor performance.

Overall, the results on the small-scale instances show that
BACO is very effective.

C. Comparisons on Large-scale Instances

Then, the algorithms are compared on the large-scale in-
stances. The comparison results are shown in Table III. From
the results, we can get the following observations:
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TABLE II
COMPARISON BETWEEN BACO AND THE COMPARED ALGORITHMS ON 7 SMALL-SCALE INSTANCES.

Case Index BKS SLMMAS ILS GA SA VNS BACO

E22
min 384.67 385.44 384.67 384.67 384.67 384.67 384.67
mean 385.44↑ 385.69↑ 384.67l 384.67l 384.67l 384.67
std 0.00 2.11 0.00 0.00 0.00 0.00

E23
min 571.94 582.61 590.35 571.94 571.94 571.94 571.94
mean 582.94↑ 592.05↑ 571.94l 571.94l 571.94l 571.94
std 0.60 1.04 0.00 0.00 0.00 0.00

E30
min 509.47 514.42 509.47 509.47 509.47 509.47 509.47
mean 516.11↑ 509.47l 509.47l 509.47l 509.47l 509.47
std 0.61 0.00 0.00 0.00 0.00 0.00

E33
min 840.14 859.25 840.57 844.25 840.57 840.14 840.57
mean 860.08↑ 844.07↑ 845.62↑ 854.07↑ 840.43↓ 842.30
std 0.74 7.78 0.92 12.80 1.18 1.42

E51
min 529.90 549.81 529.90 529.90 533.66 529.90 529.90
mean 564.93↑ 539.03↑ 542.08↑ 533.66↑ 543.26↑ 529.90
std 8.70 6.92 8.57 0.00 3.52 0.00

E76
min 692.64 724.24 694.64 697.27 701.03 692.64 692.64
mean 762.09↑ 704.24↑ 717.30↑ 712.17↑ 697.89↑ 692.85
std 13.23 7.15 9.58 5.78 3.09 0.81

E101
min 839.29 891.77 841.02 852.69 845.84 839.29 840.25
mean 904.62↑ 851.62↑ 872.69↑ 852.48↑ 853.34↑ 845.95
std 4.64 6.93 9.58 3.44 4.73 4.58

w/t/l - - 7/0/0 6/1/0 4/3/0 4/3/0 3/3/1

↑ means BACO is significantly better than the compared algorithm. ↓ means BACO is
significantly worse than the compared algorithm. l means BACO is well-matched to the compared
algorithm. ‘w/t/l’ means on how many cases BACO wins, ties, or loses to the compared algorithm.
BKS represents the best known solution.

• According to the mean objective value and the statistic
test, BACO has overwhelmed SLMMAS and GA on all
the instances. Also, BACO has outperformed ILS on
nine instances, outperformed SA on eight instances, and
outperformed VNS on seven instances. According to the
min objective value, BACO has updated the best know
solutions of seven instances out of ten, except for X573,
X819, and X916. This evidence shows that BACO is
generally the best one among the compared algorithms.

• On X573, X819, and X916, BACO did not perform
well. After checking the maps of these instances, we
found that the customers in these three instances are
clustered and the depot is far away from the customers.
This kind of customer distribution may be the reason
for the poor performance of BACO. In the experiment
of parameter tuning that is shown in the supplemental
material, we have found that adjusting the weight of
heuristic may improve the performance of BACO on
this kind of instances. We retain the adaptive parameter
adjusting as a future research direction.

To further analyze the converging behavior of BACO,
its convergence curves are drawn with SLMMAS and ILS,
which are shown in Fig. 6. The convergence curves of other
algorithms are not available because their codes and papers
are not publicly available now. These figures show that:

• Basically, BACO has converged on most of the instances
within the given execution time, except on the largest one
X1001. Its converging speed is faster than ILS and SLM-
MAS. SLMMAS even did not work on some instances
after initialization. This phenomenon is also shown in
Table III that the values of the standard deviation of
SLMMAS on some instances are zero.

• The advantage of the converging speed of BACO orig-

inates from its better global search ability than ILS on
large-scale instances. ILS generates new solutions within
a pre-defined local area each time based on some well-
known local search and perturbation operators like 2-opt
and random double-bridge that were used in [22]. When
solving large-scale instances, the global search ability of
ILS in the huge search space is not sufficient. It takes a
longer time to jump out of local optima on large-scale
instances than on small-scale instances. BACO uses a
pheromone matrix to guide the construction of solutions.
In the early stage of optimization when the difference
among the pheromone values of different connections is
not great, BACO has a stronger global search ability than
ILS and is more able to jump out of local optima. Thus,
in Fig. 6, we can see that BACO has a faster converging
speed than ILS and finally gets better results within the
given period of time.

• The comparison between BACO and SLMMAS on large-
scale instances demonstrates the advantage of the bi-level
optimization structure of BACO again in terms of both
effectiveness and efficiency. By decomposing the decision
space, the complexity of the problem is reduced and
BACO can focus on the promising area which leads good
converging speed. However, in SLMMAS, the search
space is huge for large-scale instances, which makes it
hard to find good solutions.

• Although BACO has shown good performance, it has two
disadvantages in terms of the OS-MMAS algorithm. The
first one is the sensitivity to the parameters α and β in
(13). The experiment in the supplemental material shows
that different parameter settings may prefer different
kinds of instances. The second one is the relatively slow
execution speed. In OS-MMAS, every next customer
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TABLE III
COMPARISON BETWEEN BACO AND THE COMPARED ALGORITHMS ON 10 LARGE-SCALE INSTANCES.

Case Index BKS SLMMAS ILS GA SA VNS BACO

X143
min 16028.05 17238.76 16058.29 16488.60 16610.37 16028.05 15901.23
mean 17985.91↑ 16318.57↑ 16911.50↑ 17188.90↑ 16459.31↑ 16031.46
std 415.20 160.07 282.30 170.44 242.59 262.47

X214
min 11674.96 11421.43 11323.56 11762.07 11404.44 11323.56 11133.14
mean 12023.72↑ 11537.58↑ 12007.06↑ 11680.35↑ 11482.20↑ 11219.70
std 129.22 72.55 156.69 116.47 76.14 46.25

X352
min 27064.88 31927.71 27947.89 28008.09 27222.96 27064.88 26478.34
mean 31927.71↑ 28364.41↑ 28336.07↑ 27498.03↑ 27217.77↑ 26593.18
std 0.00 142.04 205.29 155.62 86.20 72.86

X459
min 25370.80 28448.27 26511.28 26048.21 27222.96 25370.80 24763.93
mean 29434.48↑ 26726.69↑ 26345.12↑ 25809.47↑ 25582.27↑ 24916.60
std 540.16 126.93 185.14 157.97 106.89 94.08

X573
min 51929.24 56609.94 53102.46 54189.62 51929.24 52181.51 53822.87
mean 57170.35↑ 53507.46↓ 55327.62↑ 52793.66↓ 52548.09↓ 54567.15
std 199.81 275.76 548.05 577.24 278.85 231.05

X685
min 71345.40 84435.72 74409.65 73925.56 72549.90 71345.40 70834.88
mean 84435.72↑ 75087.58↑ 74508.03↑ 73124.98↑ 71770.57↑ 71440.57
std 0.00 259.60 409.43 320.07 197.08 281.78

X749
min 81002.01 90441.6 84298.43 84034.73 81392.78 81002.01 80299.76
mean 90441.36↑ 84860.28↑ 84759.79↑ 81848.13↑ 81327.39↑ 80694.54
std 0.00 287.26 376.10 275.26 176.19 223.91

X819
min 164289.95 171553.21 168651.19 170965.68 165069.77 164289.95 164720.80
mean 172355.34↑ 169837.06↑ 172410.12↑ 165895.78↑ 164926.41↓ 165565.79
std 311.09 483.35 568.58 403.70 318.62 401.02

X916
min 341649.91 353046.07 348733.86 357391.57 342796.88 341649.91 342993.01
mean 354262.15↑ 350822.41↑ 360269.94↑ 343533.85↓ 342460.70↓ 344999.95
std 464.68 1177.08 229.19 556.98 510.66 905.72

X1001
min 77476.36 89611.93 79493.37 78832.90 78053.86 77476.36 76297.09
mean 89611.93↑ 79928.29↑ 79163.34↑ NA↑ 77920.52↑ 77434.33
std 0.00 265.91 NA 306.27 234.73 719.8671

w/t/l - - 10/0/0 9/0/1 10/0/0 8/0/2 7/0/3 -

The mean value of SA and the standard deviation of GA on X1001 are not given.
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Fig. 6. Convergence curves of BACO, SLMMAS, and ILS on large-scale instances. (a) to (j) represent X143 to X1001, respectively. x-axis represents the
execution time. y-axis represents the objective value.

is selected through a roulette wheel selection. As (13)
shows, besides the addition operation, the division opera-
tion is also frequently used in a roulette wheel selection.
Thus, compared with other methods that have similar time
complexities but use addition and subtraction most of the
time, OS-MMAS tasks a longer time to generate a tour.
However, these two disadvantages are not fatal. As we can
see from the experimental results, the traditional setting
α = 1 and β = 2 works well most of the time although
it may be not the best setting for every instance. Fig. 6
shows that the convergence speed of BACO is not slow

compared with ILS in terms of the real execution time.
Overall, the results of Table III and Fig. 6 show that although
BACO has not outperformed the state-of-the-art algorithms on
every instance, generally it is both effective and efficient on
the large-scale instances.

D. Effectiveness of the Removal Heuristic

In BACO, the pheromone matrix is update according to the
solutions that are fixed by RH. The effectiveness of RH can
greatly affect the pheromone update and thus the subsequent
route construction. To further investigate the effectiveness of
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using RH in BACO, we compare it with another two simple
yet effective heuristic methods. The reason that we do not
apply meta-heuristic algorithms to the lower-level sub-problem
has been explained in Section IV.E, that is, meta-heuristic
algorithms would be too time-consuming to solve the lower-
level sub-problem [56].

The first compared heuristic is the greedy-heuristic (GH)
algorithm that was applied in [22], [43]. The greedy-heuristic
algorithm keeps inserting charging stations into a route that
would lead to the minimum violation degree of the electricity
constraint until the route is electricity-feasible. The second one
is the forward-heuristic (FH). The forward-heuristic algorithm
follows the track of the EV. Every time it finds that the EV
does not have enough electricity to reach the next node in the
route, it inserts a charging station. BACO is re-implemented
with these two heuristic algorithms.

1) Comparison of the performance of BACO using different
heuristic methods: BACO is tested on all the instances for
10 independent runs using different heuristic algorithms. Due
to the page limit, Fig. 7 only shows the convergence curves
on some of the instances. Full results can be found in the
supplemental material.

• On the small-scale instances, the proposed RH algorithm
either outperforms GH and FH or has equivalent per-
formance with GH. Using different heuristic algorithms
barely has influence to the converging speed of BACO.

• On the large-scale instances, compared with FH, RH has
shown better performance on most of the instances but
was beaten on some of them such as X916 and X1001.
Compared with GH, RH is always better. Also, the figures
show that the converging speed of BACO with RH and
FH are much faster than using GH.

Generally, we can find that RH is efficient and effective on
both the small-scale benchmark instances and the large-scale
instances. GH can generate good solutions on small-scale
instances but it is not efficient to handle large-scale instances.
FH is not effective on small-scale instances but can be efficient
on large-scale instances.

This phenomenon can be analyzed from the perspective
of time complexity. Fig. 8 shows how many solutions are
generated during the execution on the largest instance X1001.
From Fig. 8, we can see that the rank of the time complexity
of these three algorithms is GH>RH>FH. The reason that the
simplest heuristic FH can get better results on some large-scale
instances is that BACO with FH has generated more solutions
than the other two algorithms. On these large-scale instances,
BACO requires high speed to converge within the limited
execution time. Thus, using a simple heuristic to generate more
solutions within the limited time is a good choice. However, if
the algorithm can fully converge within the limited execution
time just like the situations on the instances with less than 300
customers, GH and RH can obtain better solutions than FH,
since in this case, generating good solutions is more important
than generating more solutions. Regarding the proposed RH in
this paper, the experimental results show that it can generate
very good solutions without bringing a high computational
burden.

2) Comparison of the solutions generated by the three
heuristic algorithms: To visually demonstrate the advantages
and disadvantages of these three heuristic algorithms, we use
the solution generated by BACO with these three heuristics
on E-n23-k3 as an example. The charging stations in the
solution are removed in the first place. Then, three different
solutions are generated by using the three heuristic algorithms
respectively which are shown in Fig. 9.
• Regarding FH, it is easy to understand that the positions

to insert the charging stations may not be optimal since
it only recharges the EV when it has to. Checking the
left route of Fig. 9(a), we can find that the EV served
two customers far away from the top-left station and then
went back to the station to recharge. Fig. 9(b) and Fig.
9(c) shows that GH and RH let the EV recharge after
serving the customer near to the station then went to the
two customers, which is different from FH.

• Regarding GH, if the EV only recharges once during
the journey, GH can always find the best position to
insert the charging station. However, if the EV should
recharge multiple times during the journey, it may fail
in finding the best position to insert charging stations,
because the goal of GH is to minimize the degree of
violation rather than the objective value before the route
becomes electricity-feasible. This may lead to the wrong
positions of charging station insertion. From the right
route of Fig. 9(b), we can see that it chose different
charging stations from the stations that RH chose.

• Regarding RH, in most cases, given a route with the
same customer order, it can generates better recharging
schedules than GH and FH. However, there is a case that
RH may insert more charging stations to a route than it
really needs. Assume a scenario that a route can be fixed
by either inserting a charging station in the very middle
of the route or inserting two charging stations in the head
and tail respectively, and the extra distance of inserting
one charging station in the middle is longer than inserting
each of the two charging stations individually but is
shorter than inserting two charging stations together. In
this situation, RH will choose the second plan to insert
two charging stations which is worse than the first plan.

Overall, since FRVCP is essentially a NP-hard problem [22],
all these three heuristic algorithms cannot guarantee the opti-
mality of the recharging schedule, but from both the general
performance and the case study, we can see that the proposed
RH has clear advantages against FH and GH. Thus, it is the
best choice of BACO.

E. Effectiveness of the Restricted Enumeration Method

To investigate the effectiveness of the restricted enumeration
method, the solutions generated by BACO before the final
refinement and after the final refinement are compared. On
the seven small-scale instances, we found that the restricted
enumeration method did not change any recharging schedules
of the solutions. This result indicates again that RH is effective
enough to generate good even optimal recharging schedules
on the small-scale instances. Thus, only the comparisons on
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Fig. 7. Convergence curves of using GH, FH, and RH in BACO. (a) E23, (b) E33, (c) E76, (d) X214, (e) X459, (f) X685, (g) X819, (h) X1001. x-axis
represents the execution time. y-axis represents the objective value.
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Fig. 8. The number of solutions generated during the execution by BACO
using three different heuristic algorithms on X1001.

the large-scale instances are shown in Table IV. How much
profit the restricted enumeration method has brought to the
best and the average performance of BACO is shown. The
averaged execution time of the restricted enumeration method
is also given to show that it will not bring too much extra
computational burden.

For the first five instances X143 to X573, the enumeration
basically did not help to much, only improved the mean
objective values for X352 and X573 a little. This fact implies
that RH is already very effective to the problems with less
than 600 customers. From X685, the restricted enumeration
begins to show its effectiveness. It has brought different
degrees of improvement to the performance of BACO on the
last five instances. Especially on X685, it made over one
percent improvement which is very large for a large-scale
problem. Moreover, checking the execution time, we can see
that although the theoretical time complexity of the restricted
enumeration method is very high O(n4), its actual execution
time is short that is usually less than three milliseconds.

Overall, the restricted enumeration method is effective to
improve the quality of the final solution and efficient enough
without bringing too much extra computational cost. Based on
the results, we recommend using the restricted enumeration

TABLE IV
THE OBJECTIVE VALUES BEFORE APPLYING THE RESTRICTED

ENUMERATION METHOD AND AFTER APPLYING THE RESTRICTED
ENUMERATION METHOD.

Case Index Before After Percent Time(ms)

X143 min 15901.24 15901.24 0.00% –
mean 16031.46 16031.46 0.00% 0.43

X214 min 11133.14 11133.14 0.00% –
mean 11219.71 11219.71 0.00% 0.30

X352 min 26478.35 26478.35 0.00% –
mean 26593.49 26593.19 0.00% 0.63

X459 min 24763.93 24763.93 0.00% –
mean 24916.61 24916.61 0.00% 0.66

X573 min 53822.88 53822.88 0.00% –
mean 54574.41 54567.15 0.01% 0.87

X685 min 71817.18 70834.89 1.37% –
mean 72427.80 71440.58 1.36% 0.90

X749 min 80307.55 80299.76 0.01% –
mean 80737.13 80694.54 0.05% 1.45

X819 min 164867.95 164720.81 0.09% –
mean 165932.57 165565.80 0.22% 1.72

X916 min 344400.74 342993.01 0.41% –
mean 346278.33 344999.96 0.37% 1.69

X1001 min 76390.14 76297.09 0.12% –
mean 77603.25 77434.34 0.22% 2.18

1 Percent = (Before - After) / Before.
2 Time refers to the execution time of only the restricted enumeration

method instead of the whole optimization process of BACO.

method to deal with large-scale problems having more than
600 customers.

VI. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to solve CEVRP effectively.
This goal has been successfully achieved by proposing a new
algorithm called BACO. Specifically, BACO has shrunk the
search space of CEVRP by decomposing it into two-level sub-
problems CVRP and FRVCP. Then, orchestrating OS-MMAS
and RH together corresponding to the two sub-problems,
BACO has shown good capability in solving CEVRPs with
different scales. Comparisons with state-of-the-art algorithms
show that the general performance of BACO is significantly
better on most of the instances and it has even updated the
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Fig. 9. Solutions generated by FH, GH, and RH on E23. (a) FH, the objective value is 589.58. (b) GH, the objective value is 599.23. (c) RH, the objective
value is 571.95.

best known solutions of seven instances. Further analyses
also demonstrated the effectiveness and efficiency of the
components of BACO, which is the reason that BACO can
maintain a steady and fast optimizing speed on large-scale
instances.

Although BACO has shown promising performance in this
paper, there are still many open issues to investigate. First,
the experimental results show that the ability of BACO in
solving the instances with clustered customers is weaker than
solving regular instances. Thus, how to incorporate orientation
information in the algorithm to further improve its ability in
solving the special cases is the main direction we are going
to follow in the future work. Second, both empirical and
theoretical analyses show that there is a trade-off between
the complexity and the effectiveness of the heuristic algorithm
in solving the lower-level sub-problem FRVCP. Thus, how to
use different heuristic algorithms in different stages of BACO
to fully take advantage of the computing resource is another
promising direction to improve the performance of BACO.
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