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Algorithm A enumerate(Γ ′, sn,Π)

Input: a route without charging station Γ ′, the number of
charging stations should be considered sn, candidate sta-
tion list Π = {Π0, . . . ,Π|Γ ′|−2}

Output: an electricity-feasible route Γ ′′

1: S0→sn−1 = 0, P0→sn−1 = 0;
2: k = |Π|; Γ ′′ = ∅
3: call the following recursive function;
4: function recursion(mlen = k, nlen = sn)
5: for i = (|Π| −mlen)→ (|Π| − nlen) do
6: for j = 0→ |Πi| − 1 do
7: Ssn−nlen = Πi,j ;
8: Psn−nlen = i;
9: if nlen > 1 then

10: recursion(|Π| − 1− i, nlen− 1);
11: else
12: insert the stations in S into Γ ′ according

to the positions in P
13: if Γ ′ is better than Γ ′′ then
14: Γ ′′ = Γ ′;
15: end if
16: end if
17: end for
18: end for
19: end function
20: return Γ ′′;

I. ENUMERATION METHOD

In this section, the enumerate function that is used in
Algorithm 3 of the paper is introduced in Algorithm A. First,
we maintain a list S to store the stations to be inserted and
a list P to store the positions where these stations should
be inserted (line 1). The final solution is initialized empty
(line 2). Then, we call a recursive function to try all the
possible combinations which contains sn stations (line 3). All
the arguments and variables in the function enumerate are
the global variables to the function recursion. The recursion
takes two arguments mlen and nlen that represents how many
possible positions are left and how many stations are left to
be inserted, respectively. These two arguments are initialized
as k = |Π| and sn meaning that there are still k possible
positions in Γ ′ that have not been tried, and there are still
sn stations left to be inserted (line 4). For each position
(Γ ′i , Γ

′
i+1), we try all the candidate stations in Πi (line 5-

10). If the algorithm has generated a combination containing

sn stations, we insert these stations in S into Γ ′ to check
whether it is better than Γ ′′ (line 11-12). If so, we update Γ ′′

(line 13-15). Finally, when all the combinations containing sn
stations are already tried, Γ ′′ is returned.

II. DECOMPOSITION OF CEVRP INTO CVRP AND FRVCP

In this section, we first show the formulations of CEVRP
and its sub-problems CVRP and FRVCP. Then, why BACO
is a bi-level optimization algorithm instead of a two-stage
optimization algorithm is explained.

A. Problem Formulation

In the main manuscript, the formulation of CEVRP has
been give. However, due to the page limit, how this problem
is treated as a bi-level optimization model and how it is
decomposed into CVRP and FRVCP are not shown. Here, we
will show the definitions of CVRP and FRVCP and analyse
their relationships CEVRP.

Generally, a bi-level optimization problem can be defined
as:

minxu∈Xu,xl∈Xl
F (xu,xl) (1)

s.t. G(xu,xl) ≤ 0 (2)
minxl∈Xl

f(xu,xl) (3)
s.t. g(xu,xl) ≤ 0 (4)

Corresponding to this definition, CEVRP is decomposed into
two sub-problems. The upper level is CVRP and the lower
level is FRVCP. Therefore, the decision variable of the upper-
level sub-problem xu represents the service orders of cus-
tomers, and the decision variable of the lower-level sub-
problem xl represents the recharging schedules of vehicles.

1) Formulation of CEVRP: Before giving the formulation
of CVRP and FRVCP, the formulation of CEVRP is shown
here again to facilitate explanation. A CEVRP is defined on a
fully connected weighted undirected graph G = (V,E). V =
{0} ∪ I ∪ F̂ represents the set of nodes in the graph. 0 is the
index of the depot. I represents the customers. Each customer
i has a fixed cargo demand ci. F̂ is an extended set of charging
stations that contains βi copies of each charging station i ∈ F .
E = {(i, j)|i, j ∈ V, i 6= j} is the set of arcs. Each arc (i, j)
is associated with a weight representing the distance between
i and j, denoted as dij . Each EV has a maximum capacity
of cargo demand C and a maximum battery capacity Q. The
consumption rate of the battery is denoted as h. For each arc
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(i, j), an EV will consume the amount h ·dij of the battery to
traverse it. ui and yi represent the remaining carrying capacity
and remaining battery level of an EV when it arrives at node
i ∈ V . The mathematical definition of CEVRP is given as
follows:

min f(x) =
∑

i∈V,j∈V,i 6=j

dijxij , (5)

s.t. ∑
j∈V,i 6=j

xij = 1,∀i ∈ I, (6)∑
j∈V,i6=j

xij ≤ 1,∀i ∈ F̂ , (7)∑
j∈V,i 6=j

xij −
∑

j∈V,i6=j

xji = 0,∀i ∈ V, (8)

uj ≤ ui − cixij + C(1− xij),∀i ∈ V,∀j ∈ V, i 6= j, (9)
0 ≤ ui ≤ C, ∀i ∈ V, (10)

yj ≤ yi − hdijxij +Q(1− xij),∀i ∈ I, ∀j ∈ V, i 6= j, (11)

yj ≤ Q− hdijxij ,∀i ∈ F̂ ∪ {0},∀j ∈ V, i 6= j, (12)
0 ≤ yi ≤ Q,∀i ∈ V, (13)

xij ∈ {0, 1},∀i ∈ V,∀j ∈ V, i 6= j, (14)

where (6), (7), and (8) represent the constraints that each
customer should be served exactly once and each copy of a
station can be visited at most once. (9) and (10) represent the
capacity constraint. (11), (12), and (13) represent the electricity
constraint.

2) Formulation of CVRP: Defining the node set V ′ as the
subset of V that does not contain charging stations F̂ , the
formulation of CVRP is show as follows:

min f(x) =
∑

i∈V ′,j∈V ′,i6=j

dijxij , (15)

s.t. ∑
i∈V ′

xij = 1,∀j ∈ I, (16)∑
j∈V ′

xij = 1,∀i ∈ I, (17)∑
i∈V ′

x0i = K, (18)∑
i∈V ′

xi0 = K, (19)

uj ≤ ui − cixij + C(1− xij),∀i ∈ V ′,∀j ∈ V ′, i 6= j, (20)
0 ≤ ui ≤ C,∀i ∈ V ′, (21)

xij ∈ {0, 1},∀i ∈ V ′,∀j ∈ V ′, i 6= j, (22)

where (16), (17), (18), and (19) are the constraints that each
customer should be served exactly once and vehicles departure
from the depot. K is the number of vehicles that can be either
a fixed number or a variable. (18) and (19) are exactly the
same as (9) and (10).

3) Formulation of FRVCP: Suppose a capacity-feasible
route Γ = [v0, v1, . . . , vnr, vnr+1] where v0 = vnr+1 = 0 rep-
resents the depot and {v1, . . . , vnr} represents nr customers
in this route. Denoting the set {v0, . . . , vnr} as V ′′, the sub-
problem FRVCP of CEVRP can be defined as:

min
vnr∑
i=v0

((
∑
j∈F̂

xij(dij+dj(i+1)))+(1−
∑
j∈F̂

xij)di(i+1)) (23)

s.t. ∑
j∈F̂

xij ≤ 1,∀i ∈ V ′′, (24)

vnr∑
i=v0

xij ≤ 1,∀j ∈ F̂ , (25)∑
j∈V ′′∪F̂ ,i6=j

xij −
∑

j∈V ′′∪F̂ ,i6=j

xji = 0,∀i ∈ V ′′ ∪ F̂ , (26)

yj ≤ yi− hdijxij +Q(1− xij),∀i ∈ V ′′/0,∀j ∈ V ′′ ∪ F̂ ,
(27)

yj ≤ Q− hdijxij ,∀i ∈ F̂ ∪ {0},∀j ∈ V ′′ ∪ F̂ , (28)

0 ≤ yi ≤ Q,∀i ∈ V ′′ ∪ F̂ , (29)

xij ∈ {0, 1},∀i ∈ V ′′ ∪ F̂ ,∀j ∈ V ′′ ∪ F̂ , (30)

where (24), (25), and (26) show that each copy a station can be
at most visited once. (27), (28), and (29) show the electricity
constraints that are similar to (11), (12), and (13).

For a bi-level optimization algorithm, the overall objective
is usually used to guide the upper-level decision making
process. Even the upper-level sub-problem itself is a well-
modeled problem, its objective is not considered like (1) and
(3) showing. We only consider the overall objective (1) and the
objective of the lower-level sub-problem (3) as a constraint.
Correspondingly, although CEVRP is decomposed into CVRP
and FRVCP in this paper, the objective of CVRP (15) is never
used since we have a overall objective (5) of CEVRP. The
purpose of giving the whole formulation of CVRP is to show
the relationship between the decision variables of CVRP and
CEVRP and the similarity between their capacity constraints.
After decomposition, we can see that the variables related to
the routes among customers and the depot are the variables of
CVRP, and the variables related to the routes between stations
and customers are the variables of FRVCP. Thus, the whole
decision space is decomposed.

B. Difference between Bi-level and Two-stage

As we understand it, the difference between a bi-level
optimization and a two-stage optimization is whether the
overall objective is decomposed. For a bi-level optimization
algorithm, it will not decompose the overall objective. The
upper-level decision maker will adjust decisions according to
the overall objective. For a two-stage optimization algorithm,
it will decompose the overall objective into two sub-objectives.
The upper-level decision maker will make decisions according
to its sub-objective. The hypothesis of a two-stage optimiza-
tion algorithm is that the optimal sub-solution of the upper-
level/first-stage sub-problem can lead to the optimal integrated
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solution of the whole problem. However, this hypothesis is not
always correct when solving a bi-level optimization problem.
Taking CEVRP as an example, if we have two capacity-
feasible solutions Γ1 and Γ2 of the corresponding CVRP, and
Γ1 is better than Γ2 in terms of the objective (15), after fixing
them to be electricity-feasible, Γ1 may be worse than Γ2 in
terms of the overall objective (5).

In BACO, we proposed a OS-MMAS algorithm to generate
the capacity-feasible solutions of the corresponding CVRP,
but we did not directly use the objective (15) to update
the pheromone matrix. Instead, after fixing the solutions to
be electricity-feasible by solve the lower-level sub-problem
FRVCP, the value of the overall objective (5) is used to update
the pheromone matrix of OS-MMAS. This design perfectly
conform to the definition of the bi-level optimization. Thus,
BACO is truly a bi-level optimization algorithm rather than a
two-stage optimization algorithm.

III. PARAMETER TUNING

In ACO algorithms, α and β are two important parameters
to adjust the influence of the pheromone value and the heuristic
information. The conventional setting, i.e. α = 1 and β = 2,
is adopted not only by MMAS but also other ACO algorithms
such as ACS and AS. This setting is verified to be effective
when these ACO algorithms are used to solve the traveling
salesman problem. Since MMAS is used in BACO to generate
the giant tour for splitting which is similar to generating a
solution for a TSP, we inherited the conventional setting of
MMAS, i.e. α = 1 and β = 2, for the sake of simplicity.

Here, we investigate how these two parameters would affect
the performance of BACO. Since what really matters is the
ratio between these two parameters rather than their real
values, we follow the traditional tuning methods in ACO
algorithms that α is fixed to 1 and different β values are tried.
In this experiment, besides β = 2, another three values {0,1,5}
are tried on four instances {X143, X352, X573, X749}. The
experimental results are shown in the Fig. A.

We can get the following observations from the experimen-
tal results:
• From the perspective of the final objective value, β = 2

is only worse than β = 5 on X573.On the other three
instances, β = 2 is either equivalent to or better than the
other values.

• The convergence speed of BACO increases with the
growth of β. This phenomenon is more obvious on large-
scale instances than on small-scale instances. On X143,
β = 1, 2, 5 basically has the same convergence speed.
On X352, the convergence speed of β = 1 starts to slow
down. On X573 and X749, the convergence speeds of
BACO under different β values have clear difference.

• However, the fast convergence speed of β = 5 is not
always helpful. On X573, β = 5 can obtain both a
fast convergence speed and a good final result, but, on
X749, the fast convergence speed leads to premature
convergence rather than a good final result.

• Setting β = 0 is the worst choice that BACO basically
did not find any better solutions than the initial solution.
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Fig. A. BACO performance under different β values. (a) X143, (b) X352,
(c) X573, (d) X749.

Overall, the experimental results show a similar pattern to
the experiments of using MMAS, AS, and ACS to solve TSP,
which is in line with our expectation. Thus, setting β = 2 is
appropriate for BACO.

IV. FULL RESULTS OF HEURISTIC COMPARISON BETWEEN
FH, GH, AND RH

The convergence curves of BACO using FH, GH, and RH
on each instance are shown in Fig. B, corresponding to Fig.
7 of the manuscript.
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Fig. B. Convergence curves of using GH, FH, and RH in BACO.
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