
1

Supplementary Material of
“A Two-Stage Swarm Optimizer with Local Search

for Water Distribution Network Optimization”
Ya-Hui Jia, Member, IEEE, Yi Mei, Senior Member, IEEE, and Mengjie Zhang, Fellow, IEEE

I. ALGORITHM ANALYSIS

A. Time Complexity

The time complexity of TSOL can be divided into two parts
O(X+Y ) where O(X) and O(Y ) represent the time complex-
ities of generating and evaluating solutions, respectively. Since
evaluating a solution is mainly related to the simulation rather
than the optimization algorithm, we will focus on analyzing
O(X) here instead of O(Y ).

TSOL contains an EC algorithm ILLSO and a local search
algorithm. Regarding ILLSO, suppose there are M individuals
and G generations. In each generation, there are three oper-
ations: 1) ranking the individuals, 2) calculating the central
point of every level, and 3) generating new solutions. The
time complexity of ranking is O(M · log(M)) where M
is the population size. The time complexity of calculating
the central point of every level is O(M · Np), where Np
is the number of pipes. The time complexity of generating
solutions in each generation is also O(M · Np). Adding
them together, the time complexity of each generation is
O(M ·Np+M ·log(M)). Thus, the overall time complexity of
ILLSO is O(M ·G · (Np+ log(M))). M ·G is approximately
equal to the number of fitness evaluations. Denoting the total
number of fitness evaluations as F̂ , the time complexity of
ILLSO can be also presented as O(F̂ · (Np+ log(M))).

Regarding the local search algorithm, BFLS or DFLS,
their time complexities highly depends on the quality of xgb.
Theoretically, the time complexity of BFLS and DFLS can
be presented as O(N̂p · T ), where N̂p represents the number
of pipes whose sizes can be still reduced in xgb and T
represents how much these pipes can be reduced on average.
In TSOL, xgb has been well-optimized by ILLSO before
it is refined by the local search method. According to the
empirical observation, the time complexity of the local search
algorithm in TSOL is usually smaller than O(Np), which is
much smaller than the time complexity of ILLSO so that it can
be ignored. Adding the time complexities of generating and
evaluating solutions together, the time complexity of TSOL is
O(F̂ · (Np+ log(M)) + Y ).

B. TSOL vs LLSORL

In our previous work [1], we have acknowledged the superi-
ority of the newly proposed PSO variants, i.e. CSO and LLSO,
against the traditional EC algorithms, and proposed LLSORL
that applied LLSO to the WDN optimization problem. To com-
pensate for the lack of exploitation ability of LLSO, a random-

descent heuristic was proposed to refine the solution when
LLSO converged. Also, we found that setting a exploitation
stage was helpful to improve the performance.

Although TSOL shares a similar structure with LLSORL
that an EC algorithm for large-scale global optimization
cooperates with a heuristic algorithm, the core components
are completely updated. In particular, the difference between
TSOL and our previous work LLSORL [1] is embodied in
three aspects:

• A new EC algorithm ILLSO is proposed in TSOL.
LLSORL [1] directly used LLSO without any change. In
TSOL, we have proposed a new EC algorithm ILLSO.
The velocity updating rule is modified so that ILLSO
has better exploratio ability than LLSO. The advantages
of ILLSO compared with CSO and LLSO have been
analyzed in Section IV.B of the paper in detail. Experi-
mental results in Section VI.B also show that ILLSO is
significantly better than LLSO and CSO.

• Two new heuristic methods to further refine the solutions
are proposed in TSOL. In the previous work [1], we
proposed a random-descent heuristic that the order of the
variables to be decreased is randomly shuffled each time.
In TSOL, we proposed BFLS and DFLS that used a fixed
order according to the saving of each pipe. In most cases,
guided by the heuristic information, the performance
of BFLS and DFLS is better than the random-descent
heuristic, and also more stable than the random-descent
since no randomness is adopted.

• A new exploitation criterion is proposed TSOL. In the
previous work [1], we switch to the exploitation stage
if LLSO did not find any better solution for a fixed
number of successive generations. However, we found
that the parameter of the fixed number of successive
generations was both algorithm-dependent and instance-
dependent. Due to the stochastic characteristic of EC
algorithms, the previous criterion may often cause the
situation that LLSO is not converged when entering the
exploitation stage. The new criterion proposed in TSOL
is more adaptive than the previous one in [1]. It considers
the value range of the variables and the behaviors of the
individuals in different optimization stages. It measures
whether the algorithm has converged according to the
distance between individuals which is more reasonable.
It is more suitable to be applied to different algorithms
and different WDN instances.



2

TABLE A
SUCCESS RATE OF SHADE, IPOP-CMA-ES, CSO, LLSO, AND ILLSO

IN TERMS OF FINDING FEASIBLE SOLUTIONS

instance CMA-ES SHADE CSO LLSO ILLSO
S200 1.0 1.0 1.0 1.0 1.0
B200 1.0 1.0 1.0 1.0 1.0
I200 1.0 1.0 1.0 1.0 1.0
S300 1.0 1.0 1.0 1.0 1.0
B300 0.93 1.0 1.0 1.0 1.0
I300 0.97 1.0 1.0 1.0 1.0
S400 1.0 1.0 1.0 1.0 1.0
B400 1.0 1.0 1.0 1.0 1.0
I400 1.0 1.0 1.0 1.0 1.0
S500 1.0 0.77 1.0 1.0 1.0
B500 0.87 1.0 1.0 1.0 1.0
I500 0.9 1.0 1.0 1.0 1.0
S600 1.0 0.5 1.0 1.0 1.0
B600 0.83 1.0 1.0 1.0 1.0
I600 0.8 0.77 1.0 1.0 1.0
Bal. 1.0 1.0 1.0 1.0 1.0

II. EXPERIMENTAL RESULT ANALYSIS

This section provides more analyses about the experimental
results including 1) the success rate of each algorithm finding
feasible solutions, 2) how long each algorithm takes to find
a feasible solution, 3) the success rate of each algorithm
outperforming the heuristic methods, and 4) how long each
algorithm takes to outperform the heuristic methods.

A. Feasibility

1) Success Rate of Finding Feasible Solutions: Here, we
show the success rate of each algorithm of finding feasible
solutions. The success rate of the algorithms in Table III of the
paper can always find feasible solutions, including ILS, SADE,
WDNCC, LLSORL, and TSOL. Thus, only the success rate of
the algorithms in Table IV of the paper are shown in Table A,
including SHADE, IPOP-CMA-ES, CSO, LLSO, and ILLSO.

From Table A, it is clear that the PSO variants, i.e. CSO,
LLSO, and ILLSO, have shown better performance than
SHADE and CMA-ES. Starting from randomly initialized so-
lutions, SHADE and CMA-ES sometimes cannot find feasible
solutions. Although we know that it is easy to get a feasible
solution by setting all pipes to the largest type, the results
reveal that the exploration ability of SHADE and CMA-ES
for WDN optimization is poor.

2) Computational Load to Find Feasible Solutions: How
many fitness evaluations each population-based meta-heuristic
algorithm costs to find a feasible solution is reported in
Table B. LLSORL shares the same results with LLSO since
LLSORL uses LLSO as the optimizer. Also, TSOL shares the
same results with ILLSO due to the same reason.

From the results, we can see that LLSORL and LLSO are
the quickest algorithms to find feasible solutions among these
population-based meta-heuristic algorithms since they have
the fastest converging speed. TSOL and ILLSO are in the
second place. CSO is slower than LLSO and ILLSO. This
phenomenon indicates that the rank of converging speed of
these three algorithms is LLSO > ILLSO > CSO. Referring
the final objective values shown in Table IV of the paper,
we think that ILLSO has found a better balance between

exploration and exploitation than the other two algorithms for
WDN optimization so that it is more effective.

B. Effectiveness
1) Success Rate of Finding Better Solutions Than Heuristic:

We take the best results of the two heuristics, i.e. BFLS and
DFLS, as the baseline to check whether the other algorithms
have found better solutions than the heuristic methods. On a
specific instance, if the performance of BFLS is better than
DFLS, we take BFLS as the baseline. Otherwise, DFLS is
taken as the baseline. The results are shown in Table C. From
the results we can get following observations:

• For a large-scale WDN optimization problem, using
CMA-ES is clearly not a good idea since it is even worse
than heuristic methods.

• Two DE-based algorithms, i.e. SADE and SHADE, are
effective when the scale of the network is small. However,
when the scale of the WDN grows, their effectiveness
degrades rapidly which is similar to the phenomenon that
scholars have found from other applications.

• CSO, LLSO, and ILLSO perform very well that they have
found better solutions than the two heuristics every time,
which demonstrates their effectiveness.

2) Computational Load to Outperform Heuristics: The
results of how long each algorithm takes to outperform the
two heuristics are reported in Table D. Generally, the pattern
shown in the results of Table D is similar to the patter shown in
the results of Table B. LLSO is still the quickest algorithm that
finds better solutions than the two heuristic algorithms. ILLSO
on S200-I300 WDNs is the slower than CSO, but it surpasses
CSO when the scale of the network grows to 400. For the
other algorithms, only CMA-ES struggles to outperform the
heuristic methods. Other algorithms all have the capability to
find better solutions than the heuristic methods. Overall, from
the four tables, we can achieve the following conclusions:

• Among CSO, LLSO, and ILLSO, the rank of the con-
verging speed is LLSO > ILLSO > CSO. These three
algorithms can always outperform heuristic methods.
Thus, LLSORL and TSOL are also efficient and effective.

• Two DE variants, SADE and SHADE may work well on
relatively small networks. However, when the scale of
the network grows larger and larger, their performance
degrades faster than the PSO variants for WDN optimiza-
tion.

• CMA-ES is not suitable to be applied to WDN optimiza-
tion. Theoretically, CMA-ES optimizes the problem by
approximate the Hessian Matrix [2], but the search space
of the WDN optimization problem is not differentiable.
Thus, although its performance for function optimization
is good, it does not fit WDN optimization well.

Basically, the results have further demonstrated the advantages
of ILLSO and TSOL.

REFERENCES

[1] Y.-H. Jia, Y. Mei, and M. Zhang, “A memetic level-based learning swarm
optimizer for large-scale water distribution network optimization,” in
Proc. GECCO’2020, 2020, pp. 1107–1115.

[2] N. Hansen, “The cma evolution strategy: a comparing review,” Towards
a new evolutionary computation, pp. 75–102, 2006.



3

TABLE B
THE NUMBER OF FITNESS EVALUATIONS EACH ALGORITHM TAKES TO FIND A FEASIBLE SOLUTION.

instance SADE WDNCC LLSORL TSOL CMA-ES SHADE CSO LLSO ILLSO
S200 4.6E4 – 5.5E3 7.6E3 2.0E4 1.4E4 9.3E3 5.5E3 7.6E3
B200 3.4E4 1.1E4 3.3E3 4.3E3 8.9E3 6.3E3 4.4E3 3.3E3 4.3E3
I200 3.5E4 1.4E4 3.6E3 5.0E3 9.0E3 7.6E3 5.5E3 3.6E3 5.0E3
S300 1.7E5 – 1.9E4 2.6E4 1.1E5 6.1E4 3.4E4 1.9E4 2.6E4
B300 1.4E5 3.3E4 1.3E4 1.9E4 3.9E4 3.0E4 2.2E4 1.3E4 1.9E4
I300 1.4E5 4.2E4 1.3E4 1.8E4 3.7E4 3.1E4 2.3E4 1.3E4 1.8E4
S400 3.3E5 – 2.7E4 3.7E4 1.1E5 7.9E4 5.2E4 2.7E4 3.7E4
B400 2.6E5 3.6E4 1.7E4 2.4E4 4.8E4 3.9E4 3.1E4 1.7E4 2.4E4
I400 3.0E5 5.7E4 2.3E4 3.1E4 4.7E4 5.8E4 4.2E4 2.3E4 3.1E4
S500 7.3E5 – 6.6E4 9.0E4 2.0E5 3.5E5 1.3E5 6.6E4 9.0E4
B500 7.0E5 1.1E5 1.9E4 6.3E4 7.2E4 2.0E5 9.5E4 1.9E4 6.3E4
I500 7.5E5 1.2E5 5.1E4 6.6E4 6.3E4 2.0E5 1.0E5 5.1E4 6.6E4
S600 1.5E6 – 1.2E5 1.4E5 2.7E5 5.2E5 2.2E5 1.2E5 1.4E5
B600 9.2E5 9.4E4 5.3E4 6.6E4 1.1E5 1.8E5 1.1E5 5.3E4 6.6E4
I600 1.1E6 1.8E5 7.6E4 9.6E4 1.1E5 3.5E5 1.6E5 7.6E4 9.6E4
Bal. 2.4E4 1.2E4 5.0E3 6.0E3 8.7E2 1.2E4 7.9E3 5.0E3 6.0E3

TABLE C
SUCCESS RATE OF FINDING BETTER SOLUTIONS THAN BFLS AND DFLS.

instance SADE WDNCC LLSORL TSOL CMA-ES SHADE CSO LLSO ILLSO
S200 1 – 1 1 0 1 1 1 1
B200 1 1 1 1 0 1 1 1 1
I200 1 1 1 1 0 1 1 1 1
S300 1 – 1 1 0 1 1 1 1
B300 1 1 1 1 0 1 1 1 1
I300 1 1 1 1 0 1 1 1 1
S400 1 – 1 1 0.03 1 1 1 1
B400 1 1 1 1 0 1 1 1 1
I400 1 1 1 1 0 1 1 1 1
S500 1 – 1 1 0.6 0.77 1 1 1
B500 0.93 1 1 1 0 1 1 1 1
I500 0.03 1 1 1 0 1 1 1 1
S600 0.9 – 1 1 0.37 0.5 1 1 1
B600 1 1 1 1 0 1 1 1 1
I600 0 0.97 1 1 0 0.77 1 1 1
Bal. 1 1 1 1 0 1 1 1 1

TABLE D
THE NUMBER OF FITNESS EVALUATIONS EACH ALGORITHM TAKES TO FIND BETTER SOLUTIONS THAN BFLS AND DFLS.

instance SADE WDNCC LLSORL TSOL CMA-ES SHADE CSO LLSO ILLSO
S200 1.9E5 – 1.4E4 2.4E4 NA 2.4E4 2.2E4 1.4E4 2.4E4
B200 3.6E5 8.8E4 2.5E4 4.5E4 NA 4.9E4 4.1E4 2.5E4 4.5E4
I200 2.9E5 8.6E4 2.1E4 3.7E4 NA 3.6E4 3.3E4 2.1E4 3.7E4
S300 4.4E5 – 2.7E4 4.7E4 NA 6.8E4 4.9E4 2.7E4 4.7E4
B300 7.5E5 1.1E5 3.8E4 7.5E4 NA 6.1E4 7.4E4 3.8E4 7.5E4
I300 6.5E5 1.1E5 3.4E4 6.5E4 NA 5.1E4 6.3E4 3.4E4 6.5E4
S400 6.3E5 – 2.7E4 4.2E4 3.6E5 7.9E4 5.2E4 2.7E4 4.2E4
B400 1.2E6 1.1E5 4.3E4 7.6E4 NA 5.3E4 9.2E4 4.3E4 7.6E4
I400 1.2E6 1.4E5 4.8E4 8.0E4 NA 7.3E4 9.4E4 4.8E4 8.0E4
S500 1.2E6 – 6.7E4 9.4E4 4.4E5 3.5E5 1.3E5 6.7E4 9.4E4
B500 1.9E6 1.9E5 6.7E4 9.8E4 NA 2.0E5 1.4E5 6.7E4 9.8E4
I500 1.8E6 1.6E5 5.9E4 8.5E4 NA 2.0E5 1.3E5 5.9E4 8.5E4
S600 2.3E6 – 1.2E5 1.4E5 7.7E5 5.2E5 2.3E5 1.2E5 1.4E5
B600 1.9E6 1.0E5 5.3E4 6.6E4 NA 1.8E5 1.1E5 5.3E4 6.6E4
I600 NA 2.8E5 1.0E5 1.4E5 NA 4.0E5 2.5E5 1.0E5 1.4E5
Bal. 2.0E5 5.1E4 1.9E4 2.4E4 NA 4.1E4 2.9E4 1.9E4 2.4E4


	Algorithm Analysis
	Time Complexity
	TSOL vs LLSORL

	Experimental Result Analysis
	Feasibility
	Success Rate of Finding Feasible Solutions
	Computational Load to Find Feasible Solutions

	Effectiveness
	Success Rate of Finding Better Solutions Than Heuristic
	Computational Load to Outperform Heuristics


	References

