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Abstract—Uncertainty is ubiquitous in real-world routing ap-
plications. Automated design of routing policy by hyper-heuristic
methods is an effective technique to handle the uncertainty
and to achieve online routing for dynamic or stochastic rout-
ing problems. Currently, the tree representation routing policy
evolved by genetic programming is commonly adopted because
of the remarkable flexibility. However, numeric representations
have never been used. Considering the practicability of the
numeric representations and the capability of the numeric
optimization methods, in this paper, we investigate two numeric
representations on a representative stochastic routing problem,
uncertain capacitated arc routing problem. Specifically, a linear
representation and an artificial neural network representation
are implemented and compared with the tree representation
to reveal the potential of the numeric representations and the
characteristics of their optimization. Experimental results show
that the tree representation is the best choice, but on a majority
of the test instances, the numeric representations, especially the
artificial neural network representation, can provide competitive
performance. Further analyses also show that training a good
artificial neural network representation policy requires more
training data than the tree representation. Finally, a guideline
of representation selection is given.

Index Terms—Hyper-heuristic, uncertain capacitated arc rout-
ing, stochastic routing, genetic programming, artificial neural
network, evolutionary learning.

I. INTRODUCTION

ROUTING problems widely exist in the transportation
and logistics industry. Many studies have thoroughly

investigated the deterministic routing problems and provide
fixed routing plans as the solutions. However, due to the ubiq-
uitous uncertainty in real-world applications such as stochastic
customer demand and stochastic travel time, vehicles often
encounter unexpected routing failures like insufficient capacity
and impassible road that make the vehicles unable to finish
the tasks according to the predefined routing plan [1]–[3]. To
capture such uncertainty, many traditional routing problems
have been transformed into stochastic versions [4]–[7]. For
stochastic routing problems, an effective routing policy instead
of a fixed route is required to dynamically adjust the route
based on the status of the vehicle and the environment [8]. In
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different methodologies, routing policies can be represented
in different ways [8], [9]. One feasible approach is to take a
heuristic function as the routing policy. Whenever a vehicle
finishes a task and becomes idle, it can use the heuristic
function to calculate the priorities of the remaining tasks
and decide where to go next. For example, the Smallest-
Task-First heuristic can be represented as the reciprocal of
the customer demand. However, such simple heuristics are
not effective enough to handle complex cases. Meanwhile,
designing heuristics manually requires high expertise and
is usually time-consuming. To generate effective heuristics
automatically, hyper-heuristic techniques have been widely
applied [10]–[12].

The representation of the heuristic highly affects the dif-
ficulty of its optimization and its effectiveness [13]–[15].
Generally, there are two categories of heuristic representations:
variable-length grammar-based representation and fixed-length
parametric representation [16]. The tree representation is a
popular variable-length grammar-based representation [17]–
[19]. The corresponding heuristic is usually evolved as a
expression tree of arithmetic operators and the attributes
of the problem. The fixed-length parametric representation,
a.k.a. the numeric representation [20], requires a pre-defined
function format and the variables to be optimized are the
parameters/weights of the function.

Due to the NP-hard nature and uncertain characteristics, it
is difficult to know how complex a routing policy should be in
advance. Thus, most hyper-heuristic studies about stochastic
or dynamic routing problems focused on genetic programming
hyper-heuristic (GPHH) methods with the tree representation,
since it can evolve appropriately complex functions without
much priori knowledge [12], [21]. People have spent great ef-
forts in improving the performance of GPHH through propos-
ing new features and adopting advanced evolution schemes
[22]–[24]. In contrast, to the best of our knowledge, nobody
has ever tried to use hyper-heuristic algorithms with numeric
representations for stochastic routing problems. Without the
comparison between these two kinds of representations, it
is hard to know how well the routing policy is and how
mathematically complex the routing policy is.

Previously, Branke et al. [20] have compared three different
representations of heuristics on a dynamic scheduling prob-
lem. They found that given a sufficiently high computational
budget, GPHH can evolve a better tree-representation heuristic
than the artificial neural network (ANN) representation and the
linear representation. Nguyen et al. [25] however designed a
linear ratio representation that showed significantly better re-
sults than the tree-representation heuristic. These comparisons
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were made only on very few scenarios which might lead to
a bias or incomplete conclusion. Also, routing problems are
intrinsically different from scheduling problems because of the
unique characteristics and constraints like the geographically
distributed tasks and capacity limited vehicles, so that the
previous observations may not be applicable to the routing
problems. In addition, there are several factors that were
not investigated in previous studies such as the amount of
training data and the difficulty of the real-value optimization
for numeric-representation heuristics.

Considering these issues, in this paper, we investigate the
aforementioned three representations, i.e. 1) tree representa-
tion, 2) linear representation, and 3) ANN representation, on
a representative stochastic routing problem, i.e. the uncertain
capacitated arc routing problem (UCARP) [7], to cover the
shortage of the research of numeric representation hyper-
heuristic methods for routing problems. Specifically, during
the investigation of this paper, we will focus on the following
three questions.

1) Since numeric representations have never been tried
for stochastic routing problems, the primary question is
whether they are able to represent good routing policies,
and the further question is what kind of instance each
representation suits.

2) For numeric representations, once the function structure
is decided, the quality of the final heuristic depends on
the optimization algorithm. What the characteristics of
the real-value search space of the numeric representation
are is worth investigating. This question is important for
choosing suitable optimization algorithms.

3) Another important question is how many simulation sam-
ples are needed to evolve a good heuristic. This question
is related to the amount of data that is required when the
algorithms are used in a real-world applications.

Through investigating these three questions, we want to
achieve three research objectives:

1) Figuring out the difficulty of the stochastic routing prob-
lems in terms of heuristic generation;

2) Making a guideline of the three representations for
stochastic routing problems;

3) Finding the research direction of the heuristic design for
stochastic routing problems.

II. BACKGROUND

In this paper we choose UCARP as the representative
problem to study. The problem definition and the methodology
of how to use hyper-heuristic method to solve the problem are
introduced. The related works are also reviewed afterward.

A. Uncertain Capacitated Arc Routing Problem

Based on the capacitated arc routing problem (CARP),
UCARP considers four uncertain factors: stochastic task de-
mand, stochastic task presence, stochastic edge deadheading
cost, and stochastic edge existence [7]. A UCARP instance is
defined on a connected undirected graph G(V,E), where V
and E represent the vertex set and the edge set, respectively.

Each edge e ∈ E has a non-negative demand d(e), a non-
negative serving cost s(e), and a positive traversal cost (dead-
heading cost) t(e). If there is no task on the edge, d(e) = 0
and s(e) = 0. We denote the set of edges that have tasks as
ET . Due to the uncertain characteristics, these three attributes
are stochastic variables. Given a fleet of homogeneous vehicles
that has a max capacity Q and must depart from and return to
the depot v0, the goal is to minimize the total cost of serving
all tasks.

In real-world applications, these attributes are unknown in
advance and should be revealed during the vehicles traversing
the edges and serving the tasks. To simulate this process, we
define a sample of a UCARP by sampling each stochastic
variable an actual value. The three attributes of a sample
under a specific environment Iξ, e.g. a random seed ξ, are
denoted as dξ(e), sξ(e), and tξ(e). A solution to a sample of
a UCARP instance consists of two components, Sξ = (Γ,Π).
Γ = {Γ 1, . . . , ΓK} represents K routes, where each Γ k =
(γk1 , . . . , γ

k
Lk

) is a vertex sequence. Π = {Π1, . . . ,ΠK}
represents the serving condition of each route. Each Πk =
(πk1 , . . . , π

k
Lk−1) is a vector that shows the fraction of demand

served at each edge. πk1 = 0.5 means that the task of the edge
(γk1 , γ

k
2 ) is served 50%. Given the above definitions, a UCARP

can be formulated as follows [8]:

min Eξ∈Ξ[

K∑
k=1

Lk−1∑
i=1

tξ(γ
k
i , γ

k
i+1) +

∑
e∈ET

(sξ(e)− tξ(e))],

(1)

s.t. γk1 = γkLk
= v0,∀k = 1, 2, . . . ,K, (2)

K∑
k=1

Lk−1∑
i=1

πki · zki (e) = 1,∀e ∈ ET , (3)

K∑
k=1

Lk−1∑
i=1

πki · zki (e) = 0,∀e ∈ E − ET , (4)

zki (e) =

{
1 if e = (γki , γ

k
i+1),

0 otherwise,
(5)

Lk−1∑
i=1

dξ(γ
k
i , γ

k
i+1) · πki ≤ Q,∀k = 1, 2, . . . ,K, (6)

(γki , γ
k
i+1) ∈ E,∀k = 1, . . . ,K, ∀i = 1, . . . , Lk − 1,

(7)

πki ∈ [0, 1],∀k = 1, 2, . . . ,K, ∀i = 1, 2, . . . , Lk − 1.
(8)

The objective (1) is to minimize the expectation of the total
cost of all samples Ξ. (2) shows the constraint that vehicles
should depart from and return to the depot. (3), (4), and (5)
indicate that every task should be fully served. (6) sets the
capacity constraint. (7) and (8) defines the variables.

There are three reasons of choosing UCARP as the repre-
sentative routing problem to study:

• From the perspective of real-world applications, CARP is
widely applied to model real-world applications such as
road maintenance, garbage collection, and snowploughing
[26]–[28]. Compared with some routing problems defined
on a plain that assume all nodes are fully connected,
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CARP is closer to reality. In addition, CARP is a
representative model that has the common underlying
characteristics (e.g., objectives and constraints) of the
other variants. Although CARP cannot fully represents
them, it is important to start the investigation from the
basic but representative problem model.

• From the theoretical perspective, a CARP can be trans-
formed to a capacitated vehicle routing problem (CVRP)
by introducing more vertices [29]. In the supplementary
material, we also showed how to transform a CVRP into
a CARP. Thus, the experiments made on CARP should
be suitable for CVRP as well to a certain extent.

• From the perspective of uncertainty, UCARP belongs to
the category of stochastic routing. It has concerned four
stochastic factors of both task demand and traversing cost,
which has basically covered the stochastic characteristics
of the real-world applications.

Overall, based on these three reasons, our study on UCARP
is expected to be extendable to some other stochastic routing
problems [1], such as stochastic CARP [28], vehicle routing
problem (VRP) with stochastic demand [30], and stochastic
VRP with random travel times [6].

B. Routing Policy
Due to the uncertainty of UCARP, it is hard to apply a static

solution to all possible situations. Routing policy (dispatching
rule), as a heuristic, is an effective mechanism to handle the
uncertainty since it does not rely on any pre-planned solution
[31], [32]. During the serving process, a routing policy is used
to give instructions to the vehicles, telling each vehicle which
task to serve next based on the status of the vehicle and the
attributes of the remaining tasks. Although any method that
can give instructions to the vehicles can be taken as a routing
policy, in this paper, we specifically use the routing policy
as a function to calculate priority values for candidate tasks.
Whenever a vehicle becomes idle and there are still unassigned
tasks, the task with the highest priority is chosen to be served
by the vehicle.

In this paper, we use simulation to evaluate a routing policy
[33]. The simulation process of applying a routing policy to
a UCARP instance sample is shown in Algorithm I. Since
the true values of the attributes are unknown in advance,
we usually use the information of historical distributions of
the attributes to calculate the priorities of the tasks like the
expectation value. Due to the online routing process, a vehicle
may encounter two kinds of failure:

• Route failure: the actual demand of the task is beyond
the remaining capacity of the vehicle.

• Edge failure: the edge ahead of the vehicle is impassable.
The route failure can be repaired by returning depot and refill.
The edge failure can be repaired by making a detour using
Dijkstra’s algorithm. Also, to obtain the objective (1), we
usually use several samples rather than a single sample to
evaluate a routing policy.

C. Learning Routing Policies
Taking a routing policy as a heuristic, a hyper-heuristic

algorithm searches the space of heuristics rather than the space

Algorithm 1 Simulation
Input: a instance sample Iξ, a routing policy h(·), number of

vehicles K.
Output: a solution Sξ.

1: Initialize an empty event sequence Υ;
2: initialize an empty solution Sξ;
3: unassigned task set UT = ET ;
4: for i = 1, . . . ,K do
5: add an event of the ith vehicle into Υ;
6: end for
7: while Γ is not empty do
8: retrieve the next event ϵ and its corresponding vehicle;
9: if UT is not empty then

10: calculate the priority values of e ∈ UT by h(·);
11: assign eh with the highest priority to the vehicle;
12: remove eh from UT ; remove ϵ from Υ;
13: update the event sequence;
14: else
15: the vehicle returns to depot;
16: end if
17: update the solution Sξ;
18: end while
19: return Sξ;

of solutions [34]–[36]. Mathematically, a routing policy is
a function that maps several attributes to a priority value,
f(x) = y. Thus, if the priority is defined as a real value
y ∈ R, the search space of the hyper-heuristic is affected by
the other two components, attributes x and representation f .

• Attributes are the information that can be used during the
simulation. They can be extracted from task-related infor-
mation, vehicle-related information, and environmental
information. These attributes can be either static like
the maximum capacity of vehicles or dynamic like the
distance between the vehicle and the task. How many
attributes are extracted defines the dimensionality of
the attributes space x ∈ S. Suppose ns attributes are
extracted, S ⊆ Rns.

• A representation of a routing policy f consists of two
parts: 1) the function class f ∈ F that defines the
structure of the function (e.g. linear combination of the
attributes, an expression tree with attributes as terminals)
and 2) the parameter space Ψ which specifies the param-
eters ψ that can be tuned to optimize the routing policy.

Assisted by the simulation, the overall approach to gen-
erating the routing policy for a UCAPR is depicted in Fig.
1. Given the attribute set and function class, the optimiza-
tion algorithm generates candidate routing policies and sends
them to the simulation process to evaluate. According to the
simulation results, the optimization algorithm would gradually
adjust the parameters to generate better policies. Whenever the
stopping criterion is met, e.g. the maximum number of fitness
evaluations (simulations), the optimization algorithm stops and
returns the best routing policy.

D. Related Work

Hyper-heuristic methods can be classified into two cate-
gories: generative hyper-heuristic and selective hyper-heuristic
[34]. Although some selective hyper-heuristic methods can
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optimization algorithm

UCARP simulation

Candidate Policy Policy Performance
UCARP 

instance

attributes set S function class F

genotype ψ phenotype fψ:S→ℝ

optimized 

policy

fψ* :S→ℝ

Fig. 1. Overview of finding the best routing policy by hyper-heuristic.

also achieve online decision making [37]–[39], their perfor-
mance depends on the quality of the low-level heuristics.
Designing effective low-level heuristic is a problem-dependent
job that requires high expertise [40], [41]. Generative hyper-
heuristic methods usually do not rely on low-level heuristics
[34], that is flexible to different problems. In this paper, the
heuristic representations are investigated under the generative
hyper-heuristic category.

Broadly, hyper-heuristic algorithms are also related to au-
tomatic algorithm design since the product is a heuristic that
can be considered as an algorithm [42]. The similarity between
hyper-heuristic and algorithm portfolio construction [43], [44]
is that they both pay attention to the generalization ability of
the generated algorithm. The difference is that hyper-heuristic
considered in this paper takes charge of not only tuning the
parameters of the algorithm but also build the algorithm from
scratch if the algorithm’s structure is not determined like the
tree representation. A hyper-heuristic algorithm is essentially a
knowledge learning process that discovers knowledge through
evolution to achieve the goal. However, different from the
evolutionary transfer optimization algorithms [45], [46], the
learned heuristic in a hyper-heuristic algorithm is used to
directly build solutions for a case instead of re-optimizing
existing solutions or transferring knowledge between different
cases.

Regarding the generative hyper-heuristic methods that were
proposed for routing problems, Weise et al. [47] first applied
GPHH to CARP with stochastic task demand. After that, Liu et
al. [22] and MacLachlan et al. [8] extracted more informative
attributes and proposed better GPHH algorithms for UCARP.
Wang et al. [23], [48] adopted multi-objective optimization
and niching techniques in GPHH to evolve more explainable
tree-representation heuristics. Ardeh et al. [24], [49] proposed
several transfer learning methods to investigate whether a rout-
ing policy evolved for a case can be used for the other cases.
Besides arc routing problems, GPHH methods are also applied
to vehicle routing problems (VRPs). Benyahia and Potvin [12]
proposed a GPHH method to help the vehicle dispatching in
a courier service application. Lewczuk et al. [50] used GP
for a time-dependent VRP. Sim and Hart [51] proposed a
hybrid algorithm that combined GPHH with a selective hyper-
heuristic for VRP. Recently, Jacobsen-Grocott et al. [52] tried
GPHH for dynamic VRP with time window and achieved
better results than manually designed heuristics. All of the
above works have demonstrated the effectiveness of GPHH,
but so far, there has not been a generative hyper-heuristic

algorithm that uses numeric representations for dynamic or
stochastic routing problems.

Numeric representation is currently not the mainstream,
but several works have shown its practicality for scheduling
problems although GPHH is the most widely used generative
hyper-heuristic method for scheduling problems as well [53]–
[57]. The linear representation has been used in the early days
[58]–[60]. Among these works, Kuczapski et al. [60] proposed
an interesting linear representation as the weighted sum of dif-
ferent dispatching rules. Eguchi et al. [61] proposed a hyper-
heuristic method to evolve an ANN representation dispatching
rule by simulated annealing for a job-shop scheduling problem
with dynamically changing environment. Recently, Nguyen
and Zhang [25] have successfully evolved a linear-ratio-
representation heuristic using particle swarm optimization that
showed significantly better results than GPHH. Branke et
al. [20] made a comparison among the tree representation,
the linear representation, and the ANN representation on a
dynamic scheduling problem. They have found that 1) in terms
of the effectiveness, given sufficiently high computational
budget, the tree representation can provide better performance
than the ANN representation and the linear representation.
The linear representation is far worse than the other two
representations. 2) In terms of the computational budget, the
linear representation requires the lowest budget to converge,
followed by the ANN representation. GP requires the highest
budget to evolve a good tree-representation dispatching rule.

However, this comparison was only made under a single
scenario of scheduling which might be biased or incomplete.
Also, whether the conclusion suits routing problems is ques-
tionable since routing problems have intrinsic difference with
scheduling problems. Besides, there are two aspects that have
not been investigated in any literature.

• Researchers have found several characteristics of the
search space of the tree representation heuristic like
the duplication phenomenon where different heuristics
lead to the same result [20], [62]. However, there is no
study about the real-value search space of the numeric
representations.

• Most of the studies conducted their experiments under a
same experimental setting. Although several of them have
investigated the computational budget requirement [20],
[25], the requirement of training data is not investigated.

All of the aforementioned issues and questions motivate us
to conduct the comparison of different heuristic representations
for routing problems.

III. POLICY REPRESENTATIONS

From the perspective of evolutionary computation (EC),
representation is the bridge to connect the genotype and the
phenotype of the solution. Genetic or evolutionary operators
are directly applied to genotypes. Phenotypes represent the
actual solutions that are transformed from genotypes through
the representation [13]. The representation of routing policy
highly affects the search space of the optimization algorithm.
Intuitively, a small and smooth search space that contains
the optimal solution is always desirable. However, due to the
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Fig. 2. Tree representation.

complexity of UCARP, it is hard to design a representation
that can lead to such a search space. This problem leads
to the significance of this paper that it would be helpful in
understanding the advantages and disadvantages of different
representation alternatives through an empirical comparison,
thus to guide the future research.

A. Tree Representation

A routing policy with tree representation is a valid arith-
metic expression [20]. As Fig. 2 shows, the inner nodes, a.k.a.
non-terminal nodes, of the expression tree are operators, and
the leaf nodes, a.k.a. terminal nodes, are the attributes or
constant numbers. Corresponding to the type of the operator,
the number of child nodes of each inner node is fixed.
Which operators can be used as non-terminal nodes and which
auxiliary data or values can be used as terminal nodes besides
the attributes should be specified before the evolution process.

In the example of Fig. 2, there are four attributes
(x1, x2, x3, x4) used in the routing policy. Each time the
priority of a task is calculated, we replace the terminal nodes
with their real values and evaluate the expression tree.

GP is an evolutionary algorithm that can evolve flexibly
complex arithmetic expressions using the variable-length tree
representation. The search space contains all valid expression
trees that each non-terminal node of a tree satisfies the arity-
constraint.

B. Linear Representation

Linear representation may be the simplest numeric represen-
tation. A routing policy with linear representation is a linear
combination of the attributes:

fψ(x) =

n∑
i=1

ψixi. (9)

where the genotype ψ equals to a vector containing the weights
of attributes. Since it has the same number of elements as the
attribute vector, the search space is Rn where n is the number
of attributes. Simple heuristics like nearest-first can be taken
as a special case of linear representation where the weights of
other attributes except for the distance are zero.

When a linear-representation routing policy is applied, we
should be aware of that the attributes that are identical for
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…
…

𝑥𝑛
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𝑔2

𝑔𝑛ℎ

𝑔𝑛ℎ−1

∑

…
…

𝑓 𝒙

1

Fig. 3. Artificial neural network representation.

different tasks are useless, i.e. the attributes that are not task-
related. These attributes only change the priority values but do
not change the priority rank.

C. Artificial Neural Network Representation

Artificial neural network techniques, especially deep neural
networks, have been thoroughly investigated in the research
field of machine learning [63]. However, their potential to act
as routing policies has not been widely studied.

Although the theoretical study in [64] shows that any
continuous function can be approximated by a feed-forward
neural network with a single hidden layer, researchers tend to
use deeper structures to approximate more complex situations
nowadays [63]. As a preliminary study, we will not use very
complex or deep neural network structures in this paper,
because it is both hard to gain insights into the problem and
hard to be interpret or understood. Also, it runs counter to
our original intention of real-time decision making. Thus, we
start with a simple feed-forward neural network first. The input
layer of the neural network contains all attributes and a bias
node. The output layer has only one neuron to calculate the
priority value. The linear function is used as the activation
function of the neuron in the output layer. For each neuron in
the hidden layers, the leaky rectified linear unit function, i.e.
Leaky ReLU, is used as the activation function [65]. Thus, an
ANN with single hidden layer can be represented as:

fψ(x) =

nh∑
i=1

ψoi · max(0.1 · fψh
i
(x), fψh

i
(x)), (10)

fψh
i
(x) =

n∑
j=1

ψhi,jxj + ψhi,n+1. (11)

where ψ = (ψh, ψo) and nh represents the number of hidden
nodes in the hidden layer. ψh = (ψh1 , . . . , ψ

h
nh

) represents the
weight matrix of the links between the input layer and the
hidden layer in which each ψhi represents a weight vector of
between the ith hidden node and input layer. ψo represents
the weight vector of the links between the hidden layer
and the output layer. Since Leaky ReLU is a non-linear
activation function, the ANN representation is a non-linear
representation.

An ANN structure with only one hidden layer is shown in
Fig. 3. The upper bound of the complexity of the function
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TABLE I
INFORMATION OF THE UCARP INSTANCES

name #vertex #task #vehicle demand
Ugdb1 12 22 5 identical
Ugdb2 12 26 6 identical
Ugdb3 12 22 5 identical
Ugdb4 11 19 4 identical
Ugdb5 13 26 6 identical
Ugdb6 12 22 5 identical
Ugdb7 12 22 5 identical
Ugdb8 27 46 10 different
Ugdb9 27 51 10 different
Ugdb10 12 25 4 different
Ugdb11 22 45 5 different
Ugdb12 13 23 7 different
Ugdb13 10 28 6 different
Ugdb14 7 21 5 different
Ugdb15 7 21 4 different
Ugdb16 8 28 5 different
Ugdb17 8 28 5 different
Ugdb18 9 36 5 different
Ugdb19 8 11 3 different
Ugdb20 11 22 4 different
Ugdb21 11 33 6 different
Ugdb22 11 44 8 different
Ugdb23 11 55 10 different

that an ANN can approximate is determined by the number
of hidden layers and the number of neurons in each hidden
layer. More neurons and layers mean higher upper bound of
the complexity, also bring higher pressure to its optimization.

IV. EXPERIMENTAL SETUP

A. Benchmark Problem and Simulation Settings

In the experiment, a commonly used test set Ugdb is adopted
[7]. It contains 23 UCARP instance. The information of each
instance is shown in Table I.

To simulate the uncertain characteristics, the demand of
each task and the traversal cost of each edge of each UCARP
instance are assumed to follow the two truncated normal
distributions [8], [23]:

d(e) ∼ N (d(ē), d(ē)/5), t(e) ∼ N (t(ē), t(ē)/5). (12)

where d(ē) and t(ē) represent the original values taken from
the static instances. If a sampled task demand is smaller than
0, it is set to 0. If a sampled traversal cost is smaller than 0,
it is set to ∞, representing a broken edge.

Following the experimental settings in [8], [23], for each
algorithm on each UCARP instance, the experiment is divided
into two parts, training and test. The batch simulation method
is used in the training process. Ns samples of the instance
are generated to evaluate the routing policies. Each generation
uses Ns/Ng samples, where Ng is the maximum generation
number. In the test phase, Ns unseen samples different from
the training samples will be generated to evaluate the final
routing policy. The average solution quality of that routing
policy on the Ns test samples is taken as the test performance.
In the following experiment, we set Ns to 2000.

B. Attribute Set and Representation Parameters

A set of suitable attributes is important to routing policy
generation. Theoretically, more relevant attributes would pro-

TABLE II
ATTRIBUTE INFORMATION

Name Description Type
CFH Cost From Here (vehicle position) to the task 1
CFD Cost From Depot to the head node of the task 1
CFR1 Cost From the closest other Route to the task 1
CTT1 Cost from the Task to its closest remaining Task 1
CTD Cost from the Task to Depot 1
RQ1 Remaining Capacity of the alternative vehicle 1
SC Serving Cost of the task 1
DEM expected DEMand of the task 1
DEM1 expected DEMand of the closet remaining task 1
DC Deadheading cost of the task 1
FULL FULLness of the vehicle 2
FRT Fraction of Remaining Tasks 2
FUT Fraction of unassigned Tasks 2
RQ Remaining Capacity of the vehicle 2
CR Cost to Refill 2

Type 1 means task-related. Type 2 means task-unrelated. A task-
related attribute takes different values for different tasks when a
vehicle makes a decision.

vide more information about the problem, but the search space
also grows exponentially along with the number of attributes.
In this paper, the frequently-used attributes by GPHH are
adopted [23]. They are shown in Table II.

• For the tree representation, besides these attributes, it also
takes random constant values as terminals. Also, we need
to define the operators before optimization. Following [8],
[23], {+,−,×,÷,min,max} are adopted.

• For the linear representation, we have made it clear that
only task-related attributes are useful. According to Table
II, there are 10 task-related attributes. Thus, the genotype
of a linear-representation routing policy is a 10-dimension
real-value vector.

• For the neural network representation, since the activation
function of the neurons in the hidden layer can provide
non-linear mapping, all attributes are useful. However,
if the attributes are normalized, we can find that FULL
and RQ have a simple relationship that 1-FULL=RQ.
Since the attributes form a linear combination before the
activation function in a neuron, it is easy to represent the
relationship between FULL and RQ. Thus, in the follow-
ing experiments, we omit FULL for the neural network
presentation. Given 14 attributes, the dimensionality of
the search space depends on the number of hidden layers
and the number of neurons in each hidden layer. In our
experiment, starting from a basic neural network structure
with only one hidden layer containing 14 neurons equal
to the number of attributes [20], we increase the size of
the neural network in two ways, i.e. one with twice of
the neurons in the single hidden layer and another with
two hidden layers. The purpose is to check whether it
is easy to improve the performance by simply increasing
the number of neurons or hidden layers.

C. Normalization

For the tree representation, normalization is an optional
choice [20]. Through concatenating related attributes by the
operators, each subtree (sub-expression) can have their prac-
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TABLE III
PARAMETERS OF THE GP ALGORITHM

parameter value parameter value
population size 1024 generation 100
selection method tournament (7) max tree depth 8
crossover rate 0.8 mutation rate 0.15
reproduction rate 0.05 elitism size 10

tical meaning like RQ-DEM. Also, the dividing operator ‘÷’
can play the role of normalization.

Linear representation also does not rely on normalization
that much. However, since different attributes have different
value ranges and the genotype of the linear-representation
routing policy is the real-value weights, normalization is at
least helpful for the optimization algorithm to set uniform
boundaries of the search space. Although we have used
Leaky ReLU as the activation function of the neural network
representation, it is still helpful to apply normalization to the
attributes due to the same reason of using normalization for
linear-representation. Thus, for the two numeric representa-
tions, we use normalized attributes. All the attributes in Table
II have a natural lower bound zero. The upper bound of each
attribute is calculated by using the static CARP instance in
the experiment. We normalize each attribute by dividing its
corresponding upper bound value. Due to the uncertainty,
sometimes, the normalized attribute can be larger than one,
but in most cases, the normalized attribute value is within [0,
1]. Corresponding to the normalized attribute value, the value
range of each variable of ψ is bounded in [−1, 1].

D. Optimization Algorithms and Algorithm Parameters

In the following experiment, the tree-representation routing
policies are evolved by the GP algorithm. The numeric-
representation routing policies are evolved by the covariance
matrix adaptation evolution strategy (CMA-ES) algorithm
[66].

1) Genetic Programming: A standard GP is used to evolve
the tree-representation routing policies. The ramped half and
half initialization method is adopted. The other parameters are
shown in the Table III.

Since the elitism strategy will save the best 10 individuals
directly to the next generation each time, we can directly take
the best individual of the last generation as the overall best
one. This strategy is commonly used in GPHH methods [8],
[23].

2) CMA-ES: CMA-ES is used to optimize the weights of
the two numeric-representation routing policies. There are two
reasons we choose CMA-ES rather than the other evolutionary
algorithms. First, it is one of the state-of-the-art algorithms for
continuous optimization. Second, using CMA-ES can avoid
re-evaluation. For example, if a particle swarm optimization
(PSO) algorithm is applied, in each generation, not only
the newly-generated solutions should be evaluated, but the
personal best solutions should be re-evaluated because of the
batch simulation process. Since CMA-ES generates new solu-
tions based on a distribution, there is no need to re-evaluate any
other solutions. However, this scheme brings another problem

that which solution should be chosen as the final solution.
Because of the solution generation scheme, i.e. sampling a
distribution, and the step-size control method, CMA-ES may
generate a whole population of solutions where no one is better
than the best solution of the previous generation. Since the
focus of this paper is not to solve the re-calculation problem or
propose a new optimization method, we use a simple strategy
that the solution with the best training fitness value that the
algorithm ever found is taken as the final solution.

Regarding the parameters of CMA-ES, there are mainly two
parameters that we need to adjust, the population size λ and the
initial deviation of the distribution σ0. In this experiment, we
set σ0 = 0.4. Empirical study in [67] showed that for different
problems, using different population sizes would greatly affect
the performance. Generally, for a unimodal problem, the
original setting λ = 4 + ⌊3ln(D)⌋ is good enough, where D
represents the dimension of the problem. However, for multi-
modal problems, it is better to set a big λ value that is larger
than D. Currently, there has not been any work that reveals
the characteristic of the search space of numeric-representation
routing policies, but it is easy to know that the search space
of the neural network representation is multimodal since the
neurons of the hidden layer do not distinguish from each other.
For the linear representation, the search space may be instance-
related. Considering both the effectiveness of CMA-ES and the
computational burden, we set λ = 2 · D [68]. The maximal
generation number is still set to 100 to keep a same number of
training samples with GP. In order to show the advantage of
CMA-ES, we also compared CMA-ES with another state-of-
the-art evolutionary large-scale optimization algorithm called
competitive swarm optimizer in the supplementary material,
and the results showed that CMA-ES is better.

Each algorithm is executed on each instance 30 independent
times to get the statistic information. All algorithm are imple-
mented based on the Evolutionary Computation Java (ECJ)
package [69]. The CPU of the computing platform is Core
i7-6700 3.40GHz.

V. EXPERIMENTS AND ANALYSES

In this section, we first test the ANN representation with dif-
ferent structure configurations. Then, the three representations
are compared in different aspects, including effectiveness,
converging speed, and the requirement of the quantity of
training samples. Also, the characteristic of the real-value
search space of the linear representation is investigated. To
gain more insight into the problem and the representations,
we have made more analyses in the supplementary material to
show when the tree representation can significantly outperform
the linear representation and how different attributes contribute
to the success of the heuristic for different instances.

A. Artificial Neural Network Representation

Before conducting the overall comparison among the three
representations, we test the ANN representation under the
three different structures first. The comparison is shown in
Table IV including the mean value and the standard deviation.
Wilcoxon rank-sum tests are conducted between the smallest
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TABLE IV
COMPARISON OF THE OBJECTIVE VALUES OF ANN REPRESENTATION

UNDER DIFFERENT STRUCTURES.

Instance 14x1 28x1 14x2
Ugdb1 344.93(1.34) 345.24(1.23) 344.95(2.24)
Ugdb2 364.72(2.3) 364.77(2.69) 364.98(3.28)
Ugdb3 307.77(1.07) 308.01(1.54) 307.77(1.09)
Ugdb4 319.53(1.01) 319.25(0.56) 319.79(0.98)
Ugdb5 419.66(5.91) 420.45(6.99) 420.06(5.63)
Ugdb6 333.24(4.37) 333.15(4.3) 332.83(3.01)
Ugdb7 350.89(5.59) 348.28(2.28) 354.31(7.61)
Ugdb8 432.53(6.57) 433.62(5.47) 439.66(4.71)(−)
Ugdb9 393.34(5.09) 394.73(5.11) 394.74(4.75)
Ugdb10 296.43(3.79) 295.85(3.72) 297.81(2.75)
Ugdb11 426.59(4.81) 427.41(4.53) 430.17(5.35)(−)
Ugdb12 623.5(6.68) 624.16(8.13) 627.75(10.53)
Ugdb13 581.26(3.53) 580.93(2.99) 581.26(3.7)
Ugdb14 106.36(0.49) 106.51(0.4)(−) 106.45(0.78)
Ugdb15 58.13(0.11) 58.13(0.09) 58.2(0.23)
Ugdb16 134.76(1.5) 133.85(0.75)(+) 134.42(1.4)
Ugdb17 91.11(0.11) 91.15(0.13) 91.2(0.11)(−)
Ugdb18 166.18(0.99) 166.64(0.93)(−) 166.38(1.09)
Ugdb19 61.43(0.72) 61.09(0.42) 61.41(0.77)
Ugdb20 126.94(1.07) 126.63(0.78) 127.23(1.15)
Ugdb21 163.06(0.56) 162.88(0.47) 163.12(0.49)
Ugdb22 209.11(1.24) 209.06(0.91) 210.25(1.15)(−)
Ugdb23 248.51(1.26) 249.39(1.1)(−) 249.4(0.93)(−)
1 14x1 represents the basic structure with a single hidden layer

containing 14 neurons. 28x1 represents the structure with 28
neurons in the single hidden layer. 14x2 represents the structure
with two hidden layers, each containing 14 neurons.

2 ‘+’ means the larger ANN structure gets significantly better
results than the basic ANN structure. ‘-’ means the larger ANN
structure gets significantly worse results than the basic ANN
structure.

network structure and the other two structures. The signifi-
cance level is set to 0.05 with Bonferroni correction.

Generally, the results show that adding more layers or neu-
rons did not improve the performance. Only on Ugdb16, the
Wilcoxon rank-sum test shows that the performance of using
28 neurons is better. On the other instances, the performance
either keeps the same level or become worse. There are two
possible reasons of this phenomenon.

• The optimizer, i.e. CMA-ES, is not capable to exhibit
the best performance of the neural network presentation.
It is easy to understand that the neural network with 28
neurons in the hidden layer is more powerful than the
neural network with 14 neurons. However, the results
show that there are three instances on which the 28x1
neural network performs worse. This situation is even
severe for the network with more layers. This fact proves
that the growth of the neural network size indeed brings
high pressure to its optimization.

• It is hard to estimate how many neurons are needed for a
UCARP instance. Although theoretical analysis states that
the single hidden layer structure is able to approximate
any continuous function, it may use a large number of
neurons, which exceeds our computational capacity.

Based on the results, we can partially answer the second
question raised in the introduction section that it is not an
easy job to design a good function format/structure for the
numeric representation. At least, simply adding more neurons
or layers for an ANN representation is not a good choice.
In the following experiments, we use the neural network

TABLE V
COMPARISON RESULTS OF FRIEDMAN TEST

Instance Tree Linear ANN
Ugdb1 # / = / = = / # / = = / = / #
Ugdb2 # / + / = − / # / − = / + / #
Ugdb3 # / + / + − / # / = − / = / #
Ugdb4 # / = / = = / # / = = / = / #
Ugdb5 # / + / = − / # / − = / + / #
Ugdb6 # / + / − − / # / − + / + / #
Ugdb7 # / + / = − / # / − = / + / #
Ugdb8 # / = / + = / # / = − / = / #
Ugdb9 # / + / + − / # / = − / = / #
Ugdb10 # / + / + − / # / − − / + / #
Ugdb11 # / = / − − / # / − + / + / #
Ugdb12 # / + / + − / # / = − / = / #
Ugdb13 # / = / = = / # / = = / = / #
Ugdb14 # / + / = − / # / − = / + / #
Ugdb15 # / + / = − / # / − = / + / #
Ugdb16 # / + / = − / # / − = / + / #
Ugdb17 # / = / + = / # / = − / = / #
Ugdb18 # / = / = = / # / = = / = / #
Ugdb19 # / + / + − / # / − − / + / #
Ugdb20 # / = / = = / # / = = / = / #
Ugdb21 # / − / − + / # / = + / = / #
Ugdb22 # / = / = = / # / + = / − / #
Ugdb23 # / − / − + / # / = + / = / #

w/t/l 12/9/2(linear) 2/9/12(tree) 4/12/7(tree)
7/12/4(ann) 1/12/10(ann) 10/12/1(linear)

1 ‘#’ means not available. ‘+’ means the algorithm gets
significantly better results than the compared algorithm. ‘-’
means the algorithm gets significantly worse results than the
compared algorithm.

2 ‘w/t/l’ shows on how many instances the algorithm wins,
ties, and loses the competitions against the algorithm in the
bracket.

representation with 14 neurons in the single hidden layer as
the representative to compare with other algorithms.

B. Comparison of Different Representations

The comparison results among the three representations
are shown in Fig. 4 and Table V. Table V shows result
of the nonparametric statistical test. To compare these three
algorithms together, we use the Friedman test with Holm
as the post-hoc multiple comparison. Fig. 4 displays the
performance of each representation in the form of box-plot.
The upper labels of each figure show the mean objective
values. Meanwhile, we have tested the five path scanning
heuristics [70] on each instance, the best performance of the
five path scanning heuristics is taken as the baseline that is
shown as the dashed line in the figures.

The non-parametric statistical test results in Table V show
the overall performance of each representation in a comparing
way. The results are affected not only by the representations
but also the optimizers. The results in Fig. 4 show more
detailed information, which can be used to judge whether the
difference is caused by the representations or the optimizers. In
the following analysis, we take the best case performance, i.e.
the minimum objective value, and the overall performance, i.e.
the statistical significance test results, of each representation on
each instance among 30 runs as two measurements to analyze
the results. According to these two measurements, the results
can be classified into four situations:

• The first situation is that the tree representation has better
best case performance and its overall performance is also
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Fig. 4. Experimental results of the three representations on the Ugdb instances. (a)-(w) represent Ugdb1-Ugdb23. The x-axis shows the representations. The
y-axis represents the test performance. The upper labels are the mean objective values that are not shown in the box-plots.

better than the two numeric representations. This situation
happened on four instances, Ugdb3, Ugdb9, Ugdb10, and
Ugdb12. On Ugdb3 and Ugdb9, the ANN representation
showed better best case performance than the linear
representation but it is not capable enough to compete
with the tree representation. On Ugdb10 and Ugdb12,
the ANN representation showed similar performance with
the linear representation. This situation indicates that the
complexity of the problem is superlinear, but the ANN
representation can only partially characterize the non-
linear relationship between the attributes of a task and
its priority.

• The second situation is that the tree representation has
better best case performance but its overall performance
is not significantly better than the two numeric representa-
tions. This situation happened on seven instances, Ugdb1,
2, 8, 13, 20, 21, and 23. Among these instances, the
representative cases are Ugdb13, Ugdb21, and Ugdb23.
On Ugdb13, the tree representation is clearly more ca-
pable to represent better routing policies than the linear
representation and the ANN representation, but the Fried-
man test shows that the three representations have similar
performance. On Ugdb21 and Ugdb23, the Friedman test
shows that both the linear representation and the ANN
representation have significantly outperformed the tree
representation. This situation indicates that although the

tree representation is powerful to represent very good
routing policies, its optimization is not easy. Sometimes,
it is harder than doing real-value optimization for a
numeric representation that is not as capable as the tree
representation.

• The third situation is that the tree representation does
not have better best case performance than the other two
numeric representations but it has achieved better overall
results. This situation only happened once on Ugdb19.
Fig. 4(s) shows that the minimum objective values of
the three representations are basically identical but GP
evolved the best tree representation routing policy more
stably than CMA-ES optimizing routing policies with the
other two representations.

• The last situation is that the tree representation does not
have better best case performance than the other two
numeric representations and its overall performance is not
better either. This situation happened on the rest eleven
instances. Among these eleven instances, ten of them
have a similar pattern that the tree representation has
similar best case performance with the ANN represen-
tation or with both ANN and linear. The only exception
is Ugdb16 corresponding to Fig. 4(p) on which the best
test performance of the ANN representation is better than
the tree representation.

Then, the results shown in Fig. 4 are analysed in a compar-
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ing way with the results conducted on the dynamic scheduling
problem in [20], [25].

• In the previous studies of the scheduling problems, the
experiment showed a clear pattern that the tree representa-
tion was significantly better than the ANN representation
and both of them were significantly better than the linear
representation. However, from Fig. 4, we never see this
pattern on a specific UCARP instance. In most cases,
the ANN representation either reached the same level of
the tree representation like Fig. 4(e)(f)(g)(o) showing or
degenerated to the level of the linear representation like
Fig. 4(c)(i)(l). It seldom locates in the middle of the other
two representations.

• Also, unlike the observations on the dynamic schedul-
ing problems that the tree representation could always
achieve significantly better results than the linear repre-
sentation, on UCARP, it has been defeated by the linear
representation twice, even on the largest instance Ugdb23.

In general, the tree representation has shown a better ca-
pability to approximate suitable routing policies on different
instances than the other two numeric representations, which
is a big advantage. Although the capability of the ANN
representation is not as powerful as the tree representation, it
provides competitive performance because of the stability of
real-value optimization. Based on the experimental analysis, if
there is a new UCARP instance, the tree representation routing
policy evolved by GP is still the first choice, and the ANN
representation can be considered as a potential alternative.

C. Comparison of Convergence Speed

From the perspective of evolutionary optimization, we care
not only the quality of the final results, but also the conver-
gence speed of each algorithm. The convergence curves of the
algorithms are drawn by using the generation number as the x-
axis. The results on six representative instances are displayed
in Fig. 5. However, different algorithms generate different
numbers of solutions in each generation. Thus, combined with
the curves, how long each algorithm takes to generate and
evaluate solutions in each generation is reported in Table VI.

According to the results in Fig. 5 and Table VI, we can get
the following observations.

• Checking the results from the perspective of the gen-
eration number, the convergence speed of GP evolving
tree-representation routing policies is faster than both
CMA-ES evolving linear-representation routing policies
and neural-network-representation routing polices. Since
we give the same number of training samples in each
generation, the results show that GP can use less training
samples to get a good routing policy than CMA-ES.

• Checking the results from the perspective of the execution
time, definitely the linear representation is the fastest. As
to the ANN representation and the tree representation, it
is hard to say that which one is faster since it is related to
both the optimizer and the instance. Basically, most of the
execution time comes from the simulation process that is
related to the number of solutions generated in each gen-
eration. GP usually needs a large number of individuals

TABLE VI
EXECUTION TIME OF EACH GENERATION OF THE COMPARED ALGORITHMS

instance Tree Linear ANN
Ugdb1 9.02 0.18 4.82
Ugdb5 10.21 0.25 6.97
Ugdb11 21.47 0.65 17.47
Ugdb15 5.29 0.11 2.84
Ugdb17 8.35 0.19 5.54
Ugdb23 44.35 1.16 30.05

The unit of time is second.

in the population to keep the diversity. The large number
of parameters of an ANN representation also requires a
large number of individuals in an EC optimizer. Thus,
their converging speed in terms of execution time is slow.

• Fig. 5(a) and Fig. 5(c) show a pattern that although
the starting points are different, but when the algorithms
finally converged, they got similar results. Fig. 5(b) and
Fig. 5(d) show another pattern that the complex of the
tree-representation routing policy is naturally higher than
the linear representation and the ANN representation.
Finally, the tree-representation routing policy gets better
performance than the other two. Between the linear
representation and the ANN representation, since ANN
can approximate more complex functions, it gets better
results. Fig. 5(e) shows an interesting result that the
training performance of the tree representation is quite
stable, but its test performance is not stable. The reason
may come from the search space of the arithmetic ex-
pression that a small change of the tree may influence
the performance a lot. Compared with it, the numeric
representation is more stable. Fig. 5(f) shows a parameter
sensitive case that the linear representation get the best
result. We believe that the tree-representation routing pol-
icy must has approximated the basic relationship between
the priority of task and the attributes. However, it is hard
for GP to do more real-value parameter refinement.

Overall, evolving a good linear or ANN representation
routing policy is computationally cheaper than evolving a tree-
representation routing policy currently. However, in the future,
a more powerful numeric-representation routing policy may
have more parameters/weights that needs to be optimized.
Correspondingly, the EC optimizer may require more com-
putational budget to optimize a high-dimensional problem.

D. Investigation of the Number of Training Samples
From the perspective of evolutionary learning, how many

training samples are required by each algorithm is also critical
since it affects how many data the algorithm needs in real-
world applications. According to [71], we have theoretically
analyzed the relationship between the number of training sam-
ples and the accuracy of the estimation in the supplementary
material. Although it is shown that 2000 is a reasonable
number but it is still hard to give a universal setting that fits
all algorithms and problems. To further test the sensitivity of
each algorithm to the number of training samples, we conduct
an empirical comparison by setting another two Ns values,
500 and 1000, for training. Still, 2000 test samples are used
for test. The experimental results are shown in Table VII.
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Fig. 5. Convergence curves of the compared algorithms. (a) Ugdb1, (b)
Ugdb5, (c) Ugdb11, (d) Ugdb15, (e) Ugdb17, (f) Ugdb23. ‘TRE’, ‘LIN’,
and ‘ANN’ represent the tree representation, the linear representation, and
the artificial neural network representation, respectively. ‘TR’ means training;
‘TE’ means test.

• For the GP algorithm, there is not a general pattern
showing whether it prefers more training samples. On
Ugdb2, Ugdb4, Ugdb5, Ugdb6, and Ugdb20, the results
show that the performance is getting better and better with
the increase of the number of training samples. However,
On Ugdb8, Ugdb9, Ugdb10, and Ugdb12, the results
show that GP evolved better routing policies under 1000
training samples than 500 and 2000 samples. Finally,
the results on Ugdb11 and Ugdb14 show that GP even
performs worse and worse along with the increase of the
number of training samples.

• For the linear-representation routing policies evolved by
CMA-ES, the performance generally gets better along
with the increase of the training samples. However, since
its complexity is low, the improvement is limited. The
negative effect of increasing the number of training
samples only shows on Ugdb12.

• For the ANN representation, the pattern is stable that the
performance is kept improved with the increase of the
training samples. The improvement is significant on some
instances, such as Ugdb5, Ugdb6, Ugdb8, and Ugdb11.

Overall, the results show that the number of training samples
can affect both the training of the tree-representation routing
policy and the numeric-representation routing policy. The
pattern how the number of training samples affect the numeric
representation is clear that more training samples lead to
better results. However, the pattern how it affect the tree

representation is not very clear. On the one hand, the results
reveal that training a tree-representation routing policy does
not require much training data as the ANN representation,
which is the advantage of the tree representation. On the other
hand, it gives pressure to the best training configuration that
increasing the amount of training data may lead to worse
performance, which is a disadvantage.

E. Discussion

The experiments show that the capability and the potential
of the tree representation are better than the numeric repre-
sentations. However, using GPHH to train an effective tree-
structure heuristic is more computationally expensive than the
other two representations. Meanwhile, the tree representation
seems easier to overfit. Increasing the amount of training
data in many cases is not helpful to overcome the overfitting
problem or to improve the performance. On the contrary, the
capability and the potential of the two numeric representations
are weaker than the tree representation, but they are easier to
be trained. Meanwhile, increasing the amount of training data
is helpful to improve their performance in most cases.

There are two main reasons leading to the above results.
The first one is that the search space of the tree representation
is much larger than the numeric search space. Theoretically,
GPHH can evolve any arithmetic expression consisting of
the attributes and the operators with the tree representation.
The upper limit of capability of the tree representation is
very high. However, for the two numeric representations, once
the function structure like the network architecture of the
ANN representation and the value range of the weights are
determined, the upper limit of capability is defined. Compared
to the tree representation, the search space of a numeric-
representation heuristic with a fixed structure is much smaller.
Thus, the tree representation has better potential and capability,
but it is harder to evolve an effective tree-representation heuris-
tic than numeric-representation heuristics since searching a
larger space is more difficult.

The second reason is that the characteristics of the search
spaces of different representations are different. For a tree-
representation heuristic, a small change of the genotype like
replacing a small sub-tree with another sub-tree may lead to
a huge change of its phenotype. However, for a numeric-
representation heuristic, although we have found that the
search space is multimodal, usually a small change of the
coefficients will not make a huge difference. It indicates
that the search space of a numeric-representation heuristic is
smoother. Thus, the performance of GPHH evolving a tree-
representation heuristic is less stable than CMA-ES evolving
a numeric-representation heuristic.

The overfitting problem of GPHH may relate to both rea-
sons. If GPHH finds a heuristic that fits a part of the training
data, due to the two reasons, it would be hard to guide the
algorithm to find a more general one in such a huge search
space. As to the numeric representation, the search space is
much smaller and smoother than the search space of a tree-
representation heuristic. Thus, the optimization algorithm, i.e.
CMA-ES, can search the space more thoroughly than GPHH.
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TABLE VII
TEST PERFORMANCE UNDER DIFFERENT NUMBER OF TRAINING SAMPLES

Tree Linear ANN
instance 500 1000 2000 500 1000 2000 500 1000 2000
Ugdb1 350.08(7.58) 357.32(23.42) 349.71(16.48) 348.35(6.34) 347.56(6.46) 345.28(3.54) 347.06(5.06) 345.97(1.68) 344.93(1.34)
Ugdb2 367.25(5.04) 366.2(6.52) 365.53(8.94) 370.29(3.89) 371.36(4.24) 368.88(2.21) 368.09(3.45) 365.66(2.37) 364.72(2.3)
Ugdb3 305.7(1.59) 311.48(27.12) 305.08(0.94) 308.27(1.43) 308.01(1.12) 307.43(0.79) 312.8(4.47) 308.32(1.41) 307.77(1.07)
Ugdb4 325.5(16.97) 323.23(14.88) 322.79(14.99) 319.84(1.34) 319.44(0.21) 319.24(0.18) 321.63(4.18) 320.8(2.16) 319.53(1.01)
Ugdb5 429.68(21.76) 427.72(23.39) 420.6(6.19) 449.29(8.11) 449.29(5.71) 444.58(5.81) 428.17(11.49) 422.51(8.73) 419.66(5.91)
Ugdb6 344.07(6.22) 339.59(4.35) 338.25(5.17) 344.78(4.44) 345.14(3.49) 344.04(2.96) 340.92(8.03) 336.12(6.15) 333.24(4.37)
Ugdb7 352.9(6.13) 354.46(5.96) 354.03(9.65) 370.39(2.04) 369.3(2.3) 366.46(1.75) 357.55(9.7) 350.73(5.13) 350.89(5.59)
Ugdb8 441.3(46.18) 426.61(6.08) 442.39(67.85) 437.03(9.22) 437.34(13.01) 431.81(10.4) 444.14(9.05) 438.55(6.83) 432.53(6.57)
Ugdb9 388.23(11.08) 384.4(8.53) 386.21(21.71) 400.95(4.92) 398.25(3.28) 396.4(2.6) 397.87(6.05) 395.49(6.55) 393.34(5.09)
Ugdb10 293.21(8.1) 289.54(3.24) 291.13(12.07) 302.56(5.01) 301.55(5.41) 301.13(5.14) 299.8(6.02) 298.47(5.42) 296.43(3.79)
Ugdb11 436.51(5.17) 437.93(16.15) 448.3(80.38) 434.87(7.03) 433.55(5.47) 433.18(5.59) 434.02(7.95) 431.03(7.93) 426.59(4.81)
Ugdb12 609.85(26.62) 601.24(8.25) 603.81(24.3) 626.3(9.28) 628.26(10.16) 630.12(8.63) 639.86(13.11) 625.97(9.79) 623.5(6.68)
Ugdb13 580.07(7.44) 580.93(12.37) 577.87(6.46) 585.63(3.79) 582.4(5.57) 582.0(4.5) 585.78(5.61) 582.79(4.12) 581.26(3.53)
Ugdb14 107.33(1.92) 107.04(1.55) 108.89(10.46) 108.2(1.96) 108.04(2.26) 107.5(1.25) 107.22(0.97) 106.6(0.58) 106.36(0.49)
Ugdb15 58.7(2.16) 58.51(1.99) 58.36(1.23) 58.53(0.5) 58.51(0.43) 58.52(0.44) 58.34(0.29) 58.25(0.22) 58.13(0.11)
Ugdb16 134.61(0.64) 134.43(0.15) 134.31(0.11) 136.37(1.25) 135.79(1.32) 136.06(1.38) 136.5(2.1) 134.37(1.14) 134.76(1.5)
Ugdb17 92.42(3.41) 91.82(2.88) 91.93(3.28) 91.04(0.04) 91.13(0.1) 91.05(0.06) 91.05(0.06) 91.23(0.17) 91.11(0.11)
Ugdb18 167.71(4.48) 167.32(1.53) 167.01(2.04) 167.73(2.27) 166.68(1.27) 166.22(1.04) 167.93(2.62) 166.83(0.8) 166.18(0.99)
Ugdb19 63.8(2.19) 61.8(1.05) 61.43(1.43) 63.82(2.16) 63.07(1.17) 62.47(1.0) 62.98(1.98) 61.68(1.25) 61.43(0.72)
Ugdb20 130.66(13.15) 128.15(6.27) 127.22(3.92) 128.35(1.82) 127.32(1.17) 126.92(0.81) 128.84(1.23) 127.45(1.22) 126.94(1.07)
Ugdb21 165.36(2.42) 165.36(2.82) 165.18(3.89) 163.88(1.48) 163.84(0.97) 163.4(0.83) 163.83(1.53) 163.45(0.78) 163.06(0.56)
Ugdb22 209.06(1.61) 208.65(1.31) 209.33(2.75) 209.81(1.89) 209.17(1.4) 208.09(1.2) 211.12(1.54) 210.03(1.45) 209.11(1.24)
Ugdb23 250.62(2.73) 249.68(2.35) 249.87(2.7) 248.3(1.71) 247.64(1.12) 247.3(1.44) 250.48(1.61) 249.58(1.81) 248.51(1.26)

VI. CONCLUSION AND FUTURE WORK

The goal of this paper was to cover the research shortage
of hyper-heuristics with numeric representations for routing
problems by answering the following three questions. 1)
Whether are the numeric representations able to represent good
routing policies, and what kind of instance each representation
suits? 2) How difficult is it to optimize the parameters of a
numeric-representation routing policy? 3) How much training
data is required by each representation? Through thoroughly
investigation, we have successfully obtained the answers of
these three questions.

1) For the first question, the tree representation was still
more adaptive to represent a good routing policy than the
other two representations, but benefit from the stability
of the real-value optimization, the ANN representation
showed competitive performance on a majority of the
instances. This result indicates that the numeric repre-
sentations have good potential to represent good routing
policies. Meanwhile, we have found that the problems
having sparsely connected networks or densely connected
networks with low variance of edge cost are usually
simple that a linear representation heuristic can handle
well. The moderately connected road networks that do
not have a neat structure and clear partitions are complex,
which require more complex representations.

2) For the second question, through investigating the char-
acteristics of the search space of the linear representation,
we have found that the search space in terms of contin-
uous real-value optimization is multimodal and contains
flat fitness areas. Thus, it is not easy to evolve/learn a
good numeric-representation routing policy.

3) For the last question, the two numeric representations
have a constant preference for more training data that
the performance was always improved with the growth
of the number of training samples. As to the tree rep-

resentation, although it requires less training data than
the ANN representation, its preference is hard to predict.
Sometimes the increase of the training data lead to better
performance. Sometimes the increase of the training data
affects the algorithm in an opposite way.

Based on these answers, we can have a rough guideline:
1) When the problem is simple that meets the descrip-

tion in Section I of the supplemental material and the
computational budget is low, the linear representation is
recommended.

2) When the problem is complex and the computational bud-
get is sufficient, the tree representation is recommended.
If the road network has a neat structure like clustering
structure, the ANN representation is also recommended.

3) When there are a small number of training samples, the
tree representation is recommended, but when there are
a lot of training samples, the GP algorithm should be
carefully designed to avoid the overfitting problem.

It is worth noting that the experiments conducted in this
paper are based on the elementary tree and numeric represen-
tations without auxiliary techniques such as multi-objective
optimization, niching, and neural architecture search. These
techniques can make up for the defects of the representations
to a certain extent. Considering the limitations of our research,
there are three promising directions to continue the study of
hyper-heuristic methods for routing problems in the future.
1) For the numeric representations, we have seen that in-
creasing the complexity of the representation indeed improves
the effectiveness. However, how complex the representation
should be is a question. A straightforward idea is to use
evolutionary neural network techniques to decide the structure
of the ANN representation automatically, but this may cause
extremely high computational cost. Another promising way is
to design a specific representation that follows the ‘situation-
decision’ form. Since on some instances we have witnessed
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the success of the linear representation, if we think the linear
representation only fitting one situation of the whole routing
process, the whole routing process actually only consists of
several different situations. For situation recognition, some
famous algorithms including radial basis function network and
gradient boost can be applied. For decision making, the linear
representation or the ANN representation can be applied. Nev-
ertheless, it still requires high expertise to design the structure
but once it is made, we think it is both effective and explain-
able. 2) For the tree representation, it naturally has the ability
to recognize different situations because of the operators it
involved. Although it has shown remarkable performance in
the experiments, we have found that it is not very stable and it
encounters the overfitting problem frequently even with more
training data. Combining numeric optimization methods with
GP is good way to stabilize its performance. However, due to
the uncertainty of the problem and the non-differentiable op-
erators, advanced optimization algorithms are required rather
than traditional mathematical optimization methods based on
gradient. Meanwhile, the overfitting problem may require new
genetic operators to maintain the diversity of the population
and new selection methods to choose the individual with high
generalization ability. 3) From the perspective of application,
in the future research, more constraints and characteristics
of routing problems can be considered, and the evolutionary
transfer optimization techniques can be developed to improve
the potential generalization ability of each representation.
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