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TABLE A
EDGE COST AND VERTEX DEGREE OF THE INSTANCE.

Instance Edge Cost Vertex Degree
Ugdb1 11.43±6.45 3.50±0.67
Ugdb2 11.16±6.07 4.17±0.83
Ugdb3 10.52±6.15 3.50±0.90
Ugdb4 12.56±6.24 3.27±0.65
Ugdb5 11.88±6.45 3.85±0.69
Ugdb6 11.48±6.79 3.50±0.90
Ugdb7 11.90±6.47 3.50±1.09
Ugdb8 4.60±2.36 3.33±1.49
Ugdb9 4.32±2.40 3.70±1.46
Ugdb10 10.21±5.06 4.00±1.41
Ugdb11 7.75±5.53 4.00±1.35
Ugdb12 14.64±7.44 3.38±0.87
Ugdb13 18.11±20.65 5.40±1.65
Ugdb14 4.65±2.28 5.71±0.49
Ugdb15 2.50±1.36 5.71±0.49
Ugdb16 4.15±2.25 6.75±0.46
Ugdb17 2.85±1.61 6.75±0.46
Ugdb18 4.49±2.24 7.78±0.44
Ugdb19 3.90±2.64 2.50±1.41
Ugdb20 4.90±2.59 3.82±1.99
Ugdb21 4.44±2.61 5.82±1.72
Ugdb22 4.35±2.85 7.82±1.47
Ugdb23 4.06±2.33 9.82±0.40

I. PROBLEM COMPLEXITY ANALYSIS

After the comparison, we gain an insight into the circum-
stances under which the three representations suit for. First,
except for the number of vertices, edges, and vehicles, we
measure the tested instances from the other two aspects: edge
cost and vertex degree in order to show the characteristics of
the instances. The values are shown in the form of ‘mean±std’.

Checking the results shown in Fig. 4 of the paper with the
reference of Table A, we can find that:

• There are two circumstances under which the linear
representation is powerful enough. 1) The road network
is sparsely connected where the mean degree of vertex is
smaller than 3 like Ugdb19. 2) The network is densely
connected where the mean degree of vertex is larger than
5 and the variance of the edge cost is not very large,
such as Ugdb14-Ugdb18 and Ugdb21-Ugdb23. For the
former case, the priorities of different tasks vary greatly
that even the linear representation can tell them apart
easily since there are not so many good choices. A vehicle
can basically choose the nearest task because choosing
a task that is far away from the vehicle would cause a
long distance detour. For the later case, vehicles always

have many good candidate tasks to choose and choosing
different tasks will not affect the final objective greatly.

• When the road network is moderately connected or the
variance of the edge cost is large, the complexity of the
problem is high and more complex representations like
the tree representation are required. For a moderately
connected network, a vehicle will have several good can-
didate tasks to choose each time and different choices will
affect subsequent choices thus affecting the final objective
value. When the variance of the edge cost is large, tasks
need to be allocated carefully since different partitions of
the tasks will lead to very different objective values and
this is beyond the ability of the linear representation.

• Currently, only the applicable scope of ANN is a little
unclear. It is definitely effective on the simple instances.
However, for the complex situations, ANN is only effec-
tive on some of them. After analyzing the results and the
network shape, we found that when the road network does
not have neat structure (like clustered, symmetric, etc.),
the ANN representation tends to degrade to the linear
representation. Although this description is blur that we
did not find a specific numeric measurement to indicate
the applicable scope of ANN, the above observation gives
us a direction to understand how the routing policy works
and why they are different.

Due to the page limit, we have made detailed case study in
the supplementary material to verify the above analysis. In
summary, through increasing the complexity of the represen-
tation from linear to ANN, the performance of the heuristic
can be improved. Assuming that for each decision situation
there is an effective linear heuristic, the phenomenon of ANN
degrading to a specific linear representation on some complex
instance tells us that the ability of the ANN representation
is not good enough to cover different decision situations.
This may enlighten us to design more complex or flexible
representations by deliberately partition the whole process into
different decision situations.

II. CASE STUDY

In the paper, we have made sufficient quantitative analyses
about the performance of the three representations. However,
we have not got enough insight about under what circumstance
we should use simple representations like linear representation
or complex representations like the tree representation. To
achieve clearer guidelines than quantitative analyses only, we
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choose four representative cases {Ugdb5, Ugdb12, Ugdb17,
Ugdb19} to further analyze the routes generated by the tree
representation heuristic and the linear representation heuristic.
For each representation, the best heuristic among the 30 runs
is chosen. According to the results shown in Fig. 5 of the
paper, on Ugdb5 and Ugdb7, the tree representation heuristic
achieved better than the linear representation. On Ugdb17
and Ugdb19, they two achieved similar results. The layouts
of the four instances and the routes generated by the linear
representation and tree representation heuristics are shown in
Fig. A.

First, we analyze Fig. A(a) and (b) to see why the routes
generated by the tree representation heuristic are much better
than the linear representation heuristic. From Fig. A(a) we can
see that the tree representation heuristic left the task (1,12) to
the end of route 1 so that it can serve the tasks far away from
the depot without violating the capacity constraint. If task (1,
12) is served in the first place like the linear representation
heuristic did, the remaining capacity of the vehicle will be
insufficient to handle the task (7,12) that is slightly farther than
(1,12) from the depot. Fig. A(b) shows a complicated situation
that except the route 1, the linear representation heuristic
assigned the tasks in a very different way compared with the
tree representation heuristic, which leads to higher cost. From
Fig. A(a) and (b), we can see that Ugdb5 and Ugdb12 shares
some similarities in terms of the layout of the road network.
1) The connectivity of the network is at a moderate level that
is neither sparse nor dense. 2) It is very hard to decompose
the networks into different routes manually.

Second, we check Ugdb17 and Ugdb19 corresponding to
Fig. A(c) and (d) to see why even the linear representation is
effective on these two instances. On Ugdb17, i.e. Fig. A, we
can see that the connectivity of the network is very dense that
basically a vehicle can serve tasks one by one without gener-
ating any deadheading cost (traversing without serving). Both
the linear representation heuristic and the tree representation
heuristic have left only one task to serve with refilling. Since
the tasks (2,5) and (2,4) share the same cost, the total costs
of the routes generated by the two heuristics are identical. In
contrast with Fig. A(c), the network in Fig. A(d) is relatively
sparse and we can even manually decompose the network into
different areas and routes. Under this circumstance, the linear
representation heuristic and the tree representation heuristic
have generated identical routes.

Comparing the situations where the tree representation
outperformed and did not outperform the linear representation,
we can get some guidelines that:

• When the road network is densely connected and the
vehicle is capable enough to serve the tasks assigned to
it without refilling, or when the road network is sparsely
connected and easy to be decomposed, a linear represen-
tation is good enough to provide similar performance to
the tree representation.

• When the road network is moderately connected and hard
to be decomposed, the linear representation is not rec-
ommended since the tree representation is more flexible,
and thus more capable of generating significantly better
routes.

III. ATTRIBUTE ANALYSIS

Corresponding to the analysis of the routes, we analyze
the attribute frequencies and weights to see whether there is
a clear relationship between the usage of the attributes and
the complexity of the instances. The frequencies of attributes
appearing in the tree representation heuristic and the weights
of attributes in the linear representation heuristic are shown in
Fig. B. The meaning of each feature can be found in Table I
of the paper. For the sake of clarity, the absolute values of the
weights are shown.

From Fig. B(a) we can see that generally, CFH and DEM
generally have larger frequencies than the other attributes,
but among these four instances, Ugdb17 shows an interesting
pattern that CFH does not have a large proportion. This reason
is related to the layout of the network. Fig. A(c) shows that
the vehicle only needs to serve the successive tasks one by
one without deadheading traversing for Ugdb17. Thus, in
most cases, CFH is useless since the candidate tasks are just
around the vehicle. Another confusing phenomenon is that the
frequencies of the type2 attributes {FULL, FRT, FUT, RQ,
CR} on Ugdb17 and Ugdb19 are not lower compared with
that on Ugdb5 and Ugdb12. Since the linear representation
on Ugdb17 and Ugdb19 shows competitive performance to
the tree representation, the type2 attributes on Ugdb17 and
Ugdb19 should not be important. The results indicate that
although GP has a certain ability to select different attributes
for different instances during the evolutionary process, it is
not a good sign to use the frequencies of the type2 attributes
as the measurement of the problem complexity.

From Fig. B(b) we can see that CFH is still the most
important attributes for Ugdb5 and Ugdb12, but for the linear
representation, DEM (a demand of a customer) seems not that
important compared with its frequency in tree representation
heuristics. DEM is highly related to the fullness of the vehicle
FULL. The tree representation heuristic can use these two
attributes to estimate the customer sequence that can utilize the
capacity of the vehicle as much as possible without violating
the constraint. However, for the linear representation, FULL
is useless as a type 2 attribute, which has a big influence to
the importance of DEM. Fig. B(b) also shows that the linear
representation may have the ability to undertake the attribute
selection or heuristic explanation job since the weights of
several attributes are close to zero on some instances, which
indicates that they may be useless for the instances.

Overall, although the results show that the attributes have
different importance on different instances, we have not found
a clear pattern of attribute importance that can be used to
indicate the complexity of the problem, but we do find that
there is a potential to use the linear representation to select
attributes or explain more complex heuristics.

IV. THEORETICAL ANALYSIS OF THE REQUIREMENT OF
TRAINING SAMPLES

In this section, we analyze how many training samples are
enough theoretically. From a high-level perspective, the hyper-
heuristic algorithm considered in this paper also belongs to
automatic algorithm design. There are already several works
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Linear Route (cost 424) : 

route 0: 1 ⇒ 10 ⇒ 11 ⇒ 5 → 6 ⇒ 12 → 1

route 1: 1 ⇒ 2 ⇒ 3 ⇒ 4 → 1 

route 2: 1 → 12 ⇒ 13 ⇒ 3 ⇒ 5 ⇒ 12 → 1

route 3: 1 ⇒ 7 → 8 ⇒ 10 ⇒ 9 → 2 ⇒ 4 → 1

route 4: 1 ⇒ 12 → 6 → 7 ⇒ 8 ⇒ 11 ⇒ 9 ⇒ 2 → 1 → 

12 ⇒ 7 → 6 → 12 → 1

route 5: 1 ⇒ 4 ⇒ 13 ⇒ 5 ⇒ 6 ⇒ 7 → 6 → 12 → 1 

Tree Route (cost 402) : 

route 0: 1 → 12 ⇒ 13 ⇒ 3 ⇒ 5 → 6 ⇒ 7→ 6→12 → 1

route 1: 1 ⇒ 4 ⇒ 13 ⇒ 5 ⇒ 6 ⇒ 12 → 1 ⇒ 12 → 1

route 2: 1 → 12 ⇒ 7 ⇒ 8 ⇒ 10 ⇒ 9 → 2 → 1 

route 3: 1 ⇒ 2 ⇒ 4 ⇒ 3 ⇒ 2 → 1

route 4: 1 → 12 ⇒ 5 ⇒ 11 ⇒ 8 → 7 ⇒ 1 

route 5: 1 ⇒ 10 ⇒ 11 ⇒ 9 ⇒ 2 → 1 

(a)

Linear Route (cost 585) : 

route 0: 1 ⇒ 5 → 10 ⇒ 11 ⇒ 13 → 9 → 7 ⇒ 2 → 1

route 1: 1 → 4 ⇒ 10 ⇒ 6 ⇒ 2 → 1

route 2: 1 ⇒ 2 ⇒ 3 ⇒ 1 ⇒ 4 ⇒ 5 → 1 

route 3: 1 → 2 ⇒ 8 ⇒ 9 ⇒ 13 → 11 → 10 ⇒ 5 → 1

route 4: 1 → 4 ⇒ 11 ⇒ 12 → 6 → 2 → 1

route 5: 1 → 3 ⇒ 6 ⇒ 12 ⇒ 8 → 2 → 1

route 6: 1 → 2 → 7 ⇒ 9 → 13 ⇒ 12 → 6 → 2 → 1 

Tree Route (cost 564) : 

route 0: 1 → 2 → 6 ⇒ 12 ⇒ 13 ⇒ 11 → 10 → 5 → 1

route 1: 1 → 2 ⇒ 8 ⇒ 12 ⇒ 11 → 10 → 5 → 1 

route 2: 1 → 3 ⇒ 1 → 4 ⇒ 1 → 2 ⇒ 6 ⇒ 3 → 1

route 3: 1 → 2 ⇒ 7 ⇒ 9 ⇒ 13 → 9 ⇒ 8 → 2 → 1

route 4: 1 → 4 ⇒ 5 ⇒ 10 → 5 ⇒ 1 → 2 ⇒ 3 → 1

route 5: 1 → 4 ⇒ 11 ⇒ 10 → 5 → 1

route 6: 1 → 4 ⇒ 10 ⇒ 6 → 2 ⇒ 1 

(b)

Linear Route (cost 91) : 

route 0: 1 ⇒ 2 ⇒ 3 ⇒ 5 ⇒ 8 ⇒ 4 → 1 → 2 ⇒ 5 → 1

route 1: 1 ⇒ 4 ⇒ 5 ⇒ 7 ⇒ 4 ⇒ 2 ⇒ 6 → 1

route 2: 1 ⇒ 6 ⇒ 7 ⇒ 8 ⇒ 3 → 1

route 3: 1 ⇒ 5 ⇒ 6 ⇒ 8 ⇒ 2 ⇒ 7 → 1 

route 4: 1 ⇒ 3 ⇒ 4 ⇒ 6 ⇒ 3 ⇒ 7 ⇒ 1 ⇒ 8 → 1 

Tree Route (cost 91) : 

route 0: 1 ⇒ 2 ⇒ 8 ⇒ 1 ⇒ 7 ⇒ 4 ⇒ 6 ⇒ 7 → 1

route 1: 1 ⇒ 4 ⇒ 8 ⇒ 6 ⇒ 3 → 1 → 2 ⇒ 4 → 1

route 2: 1 ⇒ 6 ⇒ 2 ⇒ 7 ⇒ 5 ⇒ 6 → 1 

route 3: 1 ⇒ 5 ⇒ 2 ⇒ 3 ⇒ 7 ⇒ 8 → 1 

route 4: 1 ⇒ 3 ⇒ 8 ⇒ 5 ⇒ 3 ⇒ 4 ⇒ 5 → 1 

(c)

Linear Route (cost 57) : 

route 0: 1 → 5 ⇒ 2 ⇒ 3 ⇒ 7 ⇒ 5 → 1

route 1: 1 → 6 ⇒ 8 → 6 ⇒ 1 ⇒ 5 → 1

route 2: 1 ⇒ 4 ⇒ 2 ⇒ 7 → 2 ⇒ 1 

Tree Route (cost 57) : 

route 0: 1 → 5 ⇒ 2 ⇒ 3 ⇒ 7 ⇒ 5 → 1

route 1: 1 ⇒ 4 ⇒ 2 ⇒ 7 → 2 ⇒ 1

route 2: 1 → 6 ⇒ 8 → 6 ⇒ 1 ⇒ 5 → 1 

(d)

Fig. A. Layout of the instances and the routes generated by the linear representation heuristic and the tree representation heuristic. → means traversing
without serving. ⇒ means serving.
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Fig. B. Attribute frequencies of the tree representation heuristic and attribute
weights of the linear representation.

that have made some theoretical analyses about how to allocate
computational load to achieve better performance [1], [2].
Here, we start from the general framework of the analysis
of automatic algorithm design to the specific hyper-heuristic
algorithm that we considered in this paper and finally settle in
stochastic problems.

First, assume there is a sample space I where a specific
sample i can be selected/sampled with the probability of PI(i)
and a generated algorithm that can at a certain probability
PC(cij |i) give a solution with fitness value cij on the instance
i. Then, for a scenario (cij , i) of the generated algorithm, we
have the joint probability P (cij , i) = PC(cij |i)PI(i). Thus,
the expected value of the fitness value of the generated algo-
rithm with respect to the scenario P (cij , i) = PC(cij |i)PI(i):

µ = E[cij ] =

∫∫
cijdPC(cij |i)dPI(i). (1)

For the hyper-heuristic algorithm considered in this paper,
since the generated algorithm is a heuristic algorithm rather
than meta-heuristic algorithm, there is nothing random about
it. Applying a heuristic algorithm to a specific sample i will
always generate the same cij . Thus, we can use ci to represent
the fitness value of a generated heuristic on a specific sample
i. Then, (1) can be simplified as:

µ = E[ci] =

∫
cidPI(i). (2)

To estimate µ, we evaluate the generate heuristic on a set of
samples Î . For each evaluation j ∈ {1, 2, . . . , |Î|}, we observe

a fitness value cj . Then, µ can be estimated by the estimator
µ̂:

µ̂ =
1

|Î|

|Î|∑
j=1

cj . (3)

It is easy to know that µ̂ is an unbiased estimator of µ:∫
µ̂dP (µ̂) =

1

|Î|

|Î|∑
j=1

∫
cjdPI(j) = µ. (4)

Define the variance of the fitness value of the generated
algorithm on the sample space I as:

σ2 = EI [(ci − µ)2]. (5)

Although theoretically there is no upper bound of ci for
stochastic routing problems, in practice we can estimate the
upper bound based on experiments. Assume there is a upper
bound U and a lower bound L of ci. Since µ̂ is an unbiased
estimator of µ, according to Bernstein inequality, for any
ϵ > 0, we have:

Prob{µ− µ̂ ≥ ϵ} ≤ exp(− Nϵ2

2σ2 + 2(U−L)ϵ
3

) (6)

where N is the number of training samples. From (6), if
we may know σ, U , L, we can estimate how many training
samples are needed to ensure a certain level of deviation ϵ.
However, in practice, these three values should all be estimated
by generating enough training samples. Actually, since µ̂ is the
unbiased estimator of µ, according to the law of large numbers:

1

|Is|

|Î|∑
j=1

cj → µ, (|Î| → ∞), (7)

we can get the similar conclusion that more training data will
provide more accurate estimation. This theoretical analysis is
in line with our intuition and our experiment in Section V.E
especially for the linear and the ANN representations.

Then, we use the experimental results to do a post-hoc
analysis about (6). Taking Ugdb1 as the example, we retrieved
the best ANN-representation routing policy according to the
test performance. Based on the fitness values this policy
achieving on the 2000 test samples, we have estimated that
σ2 = 304.21, U = 427.85, and L = 308.58. Regarding
ϵ, for the sake of convenience and to pursue an accurate
estimation, we set a relatively small value ϵ = 1 that is at most
1/300 = 0.33% of the objective value. As to the confidence
level, we use a common setting of 95%, which means that
we want to have a estimation with deviation less than 1 at a
confidence level of 95%. Substitute the above value for the
symbols in (6), we have estimated N ≈ 2061 that is very
close to our experimental setting.

One thing should be noticed that according to the theoreti-
cally analysis, we should generate 2000 more training samples
in advance and evaluate every policy on these training samples,
but this training method is too expensive. In analogy with
the relationship between the gradient descent method and the
stochastic gradient descent method, we have used the batch
simulation method in order to save the training time.
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Fig. C. Transforming a CVRP into a CARP.

V. TRANSFORMING NODE ROUTING INTO ARC ROUTING

In [3], [4], the capacitated arc routing problem (CARP) has
been transformed into the capacitated vehicle routing problem
(CVRP) by introducing more vertices. In this section, we show
a simple inverse transformation from CVRP to CARP in order
to verify that the observations we obtaining on UCARP can
be extended to stochastic CVRPs.

Consider a CVRP with n customers and each customer
i requires a certain demand of cargo di. These customers
are scattered on a road network G(V,E) where V and E
represent the vertex set and the edge set. Fig. C shows a simple
example where there are four vertices, five edges, and eight
customers. The transforming method is very simple that if two
or more customers are on the same edge, between each pair
of successive customers, we add a virtual vertex to divide one
edge into two parts. The virtual vertex can be allocated in
any position between the two customers. After adding virtual
vertices, on each edge, there is at most one customer. Thus, we
can use the demand of the customer to represent the demand
of that edge. In the example shown in Fig. C, we have added
four virtual vertices in the map and turned the CVRP to a
CARP with nine edges.

Corresponding to the transforming process, the stochastic
characteristics of stochastic CVRPs can be transformed to
UCARP as well such as the stochastic demand and stochastic
traversing cost. Thus, considering both the transform from
CVRP to CARP and the inverse one, we may have a inference
that the experiments conducted on UCARPs can also represent
some stochastic CVRPs.

VI. INVESTIGATION OF THE SEARCH SPACE

In this experiment, we investigate whether the search space
of the the linear representation is unimodal from the perspec-
tive of continuous numeric optimization. This investigation is
helpful to choose or design suitable optimizer for the linear
representation and the other numeric representations. Taking
the weights of the linear representation ψ ∈ Pn ⊂ Rn as the
input and the objective value as the output, we can formulate
the whole problem as a function F : Pn → R. Pn in this
paper is definitely a convex set. If F is a unimodal function,
for ∀ρ ∈ (0, 1) and ∀ψ1, ψ2 ∈ Pn, the following situation will
not happen:

F (ρψ1+(1−ρ)ψ2) > F (ψ1)∧F (ρψ1+(1−ρ)ψ2) > F (ψ2).
(8)

TABLE B
TEST PERFORMANCE OF THE INTERPOLATION POINTS

case two exemplars ρ fitness ρ fitness

Ugdb1 F (ψ1) = 344.205 0.2 344.205 0.6 344.205
F (ψ2) = 344.175 0.4 344.205 0.8 344.205

Ugdb23 F (ψ1) = 246.618 0.2 246.377 0.6 251.64
F (ψ2) = 246.635 0.4 249.967 0.8 251.844

For each instance, we randomly generate 10 pairs of so-
lutions (ψ1, ψ2) and their middle point (ψ1 + ψ2)/2 and
then test their objective values based on 2000 samples. If (8)
happens, we think the search space is not unimodal. Due to
the page limit, we do not show a table in the paper to give all
the randomly generated solutions. Basically, the experimental
results show that for every instance, the situation of (8)
happens. There is no unimodal function among the 23 UCARP
instances, which means the real-value search space indeed
contains local optima. Thus, even a linear representation is
used, mathematical optimization algorithms based on gradient
cannot guarantee to find the global best solution.

Another important characteristic should be revealed is the
landscape around the global optimum. Taking Ugdb1 and
Ugdb23 as examples, for each instance, we choose two differ-
ent final solutions that have achieved similar objective values
as ψ1 and ψ2. Then, by setting four ρ values {0.2, 0.4, 0.6,
0.8}, we evaluate four interpolation points ρψ1 + (1 − ρ)ψ2.
The results are shown in Table B.

• The results on Ugdb1 show that the four interpolation
points have the same objective values as ψ1, indicating
that around the best solution, there is a flat fitness area.
On the one hand, it is a good news that to reach the
global optimum, we do not need very accurate weight
values with high precision. On the other hand, the flat
fitness area may also exist in the other area of the search
space. Plus the multimodal characteristic of the search
space, it is even harder to optimize the weights.

• The results on Ugdb23 shows the multimodal characteris-
tic of the search space again that when ρ = 0.4, 0.6, 0.8,
the objective values increase larger than both the objective
values achieved by ψ1 and ψ2.

Regarding the neural network representation, previously we
have stated that because the neurons of the hidden layer
do not distinguish from each other, the search space must
be multimodal. If this is the only factor which brings the
multimodal characteristic, there may be several global optima
in the search space and no poor local optima exist, which
is a good thing. However, we now have confirmed that
even for the linear representation, the search space is not
unimodal. Thus, the search space of weights of the basic neural
network representation may have many local optima. Thus, its
optimization is not an easy job either.

VII. OPTIMIZER DEPENDENCE

In order to show that the capacities of the numeric represen-
tations have been demonstrated by the CMA-ES optimization
algorithm, we used another optimizer to evolve the ANN
representation heuristic, called competitive swarm optimizer
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TABLE C
COMPARISON OF CSO AND CMA-ES ON ANN

instance CSO CMA-ES
Ugdb1 345.86(2.33) 344.93(1.34)
Ugdb2 365.62(2.93) 364.72(2.30)
Ugdb3 307.01(1.07) 307.77(1.07)
Ugdb4 319.26(0.71) 319.53(1.01)
Ugdb5 432.80(7.32) 419.66(5.91)
Ugdb6 341.06(3.22) 333.24(4.37)
Ugdb7 350.53(4.56) 350.89(5.59)
Ugdb8 440.46(4.83) 432.53(6.57)
Ugdb9 397.79(5.72) 393.34(5.09)
Ugdb10 298.04(2.72) 296.43(3.79)
Ugdb11 431.44(5.60) 426.59(4.81)
Ugdb12 620.57(6.18) 623.50(6.68)
Ugdb13 582.00(2.25) 581.26(3.53)
Ugdb14 107.46(1.02) 106.36(0.49)
Ugdb15 58.20(0.21) 58.13(0.11)
Ugdb16 134.94(1.12) 134.76(1.50)
Ugdb17 91.17(0.16) 91.11(0.11)
Ugdb18 166.73(1.24) 166.18(0.99)
Ugdb19 61.16(0.51) 61.43(0.72)
Ugdb20 126.47(0.57) 126.94 (1.07)
Ugdb21 164.20(1.44) 163.06(0.56)
Ugdb22 208.86(0.81) 209.11(1.24)
Ugdb23 249.22(1.04) 248.51(1.26)

(CSO) [5]. CSO is one of the state-of-the-art EC algorithms
proposed for large-scale global optimization problems with
more than 200 variables. The population size of CSO is set
to 200. Other settings are kept unchanged. The experimental
results in Table C. The highlighted values mean that they are
significantly better than their counterparts.

From the experimental results, we can see that CMA-ES
shows better performance than CSO in optimizing the weights
of the ANN representation heuristics. Only on Ugdb12, CSO
shows better results than CMA-ES, but it does not affect the
conclusion. Thus, our analysis in the paper is trustworthy.

Nevertheless, we can see that the optimizer indeed affects
the final performance of the algorithm. This is inline with the
analysis made in the previous section of the investigation of
the search space. The search space of the numeric represen-
tation has the multimodal character. If the optimizer is not
power, it may not be able to exhibit the real capacity of the
representation.

As to the tree representation, currently GP may be the only
option to use. Although there are several GP variants proposed
to solve UCARP, basically they were proposed to reduce the
tree size or to save the computation time [6], [7]. They did
not improve the objective value significantly.

Overall, although the selection of optimizer would affect the
experimental results, we think that the capacities of the three
representations have been fully demonstrated in the paper.
Thus, the analysis is optimizer-independent.
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