
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—The introduction of workflow in cloud computing

has afforded a new and efficient way to tackle large-scale

applications. As an NP-hard problem, how to schedule cloud

workflows effectively and economically with deadline constraints

and different kinds of tasks and resources is extraordinarily

challenging. To solve this constrained problem, this paper intends

to develop an intelligent scheduling system from the perspective of

users to reduce expenditure of workflow, subject to the deadline

and other execution constraints. A new estimation model of the

task execution time is designed according to virtual machine (VM)

settings in real public clouds and execution data from practical

workflows. Based on the new model, an adaptive ant colony

optimization algorithm is proposed to meet the quality of service

and orchestrate tasks. The adaptiveness of the algorithm is

embodied in two aspects. First, an adaptive solution construction

method is designed that each solution is built with a dynamically

changing resource pool, thus the search space of the algorithm is

narrowed down and the execution time is decreased. Second, two

heuristics with self-adaptive weight are introduced to adaptively

meet different deadline settings. Simulating results on four types

of workflows show that the proposed approach is effective and

competitive.

Index Terms—Ant colony optimization, cloud computing,

workflow scheduling.

I. INTRODUCTION

orkflow technology has been widely used to manage

large computing applications [1]. In scientific

computation environments, a workflow is defined as a

collection of atomic tasks interconnected via data or computing

dependencies [2], [3]. In recent decades, workflows have been

This work was supported in part by the National Natural Science Foundation

of China under Grant 61622206, 61332002, and the Natural Science

Foundation of Guangdong under Grant 2015A030306024. (Corresponding

Authors: Wei-Neng Chen and Jun Zhang)
Y.-H. Jia is with Sun Yat-sen University, Guangzhou, 510006, China.

W.-N. Chen and J. Zhang are with School of Computer Science and

Engineering, South China University of Technology, Guangzhou, 510006,

China and with Guangdong Provincial Key Lab of Computational Intelligence

and Cyberspace Information, Guangzhou, 510006, China. (email:

cwnraul634@aliyun.com; junzhang@ieee.org).

H. Yuan is with School of Computer Science and Network Security,

Dongguan University of Technology, Dongguan 523808, China.

T. Gu is with the School of Computer Science and Engineering, Guilin

University of Electronic Technology, Guilin, 541004, China.

H. Zhang is with the School of Information Science and Engineering,

Shandong Normal University, Jinan, 250014, China.

Y. Gao is with the School of Computer Science and Engineering, South

China University of Technology, Guangzhou, 510006, China.

applied in many fields, such as e-commerce, bioinformatics,

astronomy, and physics [4]-[6]. Generally, tasks in the

workflow consist of compute-intensive and data-intensive

activities which should be executed in an acceptable time. To

satisfy the quality of service (QoS), large-scale workflows are

usually deployed and executed in distributed high-performance

computing environments. How to orchestrate these tasks has

been a hot topic studied for a long time [7], [8].

The appearance of the public Infrastructure as a Service

(IaaS) clouds offers us a new utility-based platform to execute

large scale workflows [9]-[12]. In the public IaaS model, the

fundamental computing resource provided to consumers is in

the form of virtual machines (VMs) which shields the

underlying hardware information. Consumers can lease any

number of VMs on demand and pay for what they use on the

pay-as-you-go basis. In this way, the public IaaS cloud has

become a popular platform for the implementation of

large-scale scientific and e-commercial workflows [13], [14].

How to orchestrate workflows well is an important issue for

the usage of IaaS clouds. Good orchestrations of cloud

workflows can benefit service suppliers in energy saving and

resources management. Meanwhile customers can also

decrease the time and economic expenditure through

appropriate workflow scheduling. In this paper, we consider the

problem how to minimize the expenditure of executing a

workflow on a public IaaS cloud under the deadline constraint

from the users’ perspective.

Hitherto, several researches have studied the problem in

different scenarios. To reduce the expenditure, users must have

an effective and economical schedule before submitting the

workflow. Thus the real cloud computing model should be

simulated and proper optimization methods should be used.

From the perspective of the computing model, some studies

directly assumed that the execution time of all tasks on all kinds

of VMs is known in advance [15] which is unrealistic. A more

realistic practice is to define the VM model by considering its

computing capacity and price. However, either the VMs are

thought to be homogeneous [16] or the capacity of a VM is

represented only by the speed of central processing unit (CPU),

so that the contribution of other infrastructures like memory is

ignored [3], [13], [17]-[22]. Thus running a task on different

VMs cost roughly the same, which is usually not the case in

practice [23]-[25]. From the perspective of the scheduling

algorithm, these proposed approaches can be roughly divided

into two classes: heuristic and meta-heuristic. In the first

An Intelligent Cloud Workflow Scheduling System

with Time Estimation and Adaptive Ant Colony

Optimization
Ya-Hui Jia, Student Member, IEEE, Wei-Neng Chen, Senior Member, IEEE, Huaqiang Yuan, Tianlong

Gu, Huaxiang Zhang, Ying Gao, and Jun Zhang, Fellow, IEEE

W

mailto:cwnraul634@aliyun.com
mailto:junzhang@ieee.org

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

category, Mao and Humphrey [26] proposed a method called

Scaling Consolidation Scheduling (SCS) which used some

heuristic behaviors to cut down the cost step by step. Abrishami

et al. [3] proposed two algorithms named IaaS Cloud Partial

Critical Path (IC-PCP) and IaaS Cloud Partial Critical Path with

Deadline Distribution (IC-PCPD2). Although these algorithms

are effective under some specific conditions, they share a

common weakness that when the workflow scale becomes

larger, the performance degrades rapidly owing to the lack of

adaptability to different deadline requirements. Thus, several

meta-heuristic approaches are proposed. Both Pandey et al. [17]

and Rodriguez et al. [13] applied the particle swarm

optimization (PSO) algorithm [27] in their scheduling

approaches. Compared with the heuristic approaches,

experimental results show that PSO performs relatively better.

However, as their PSO approaches lack a mechanism to

incorporate problem-based heuristic information, the search

process suffers from a slow convergence speed. Considering

this problem, Chen et al. [15] proposed an approach by

applying genetic algorithm (GA), named dynamic objective

genetic algorithm (DOGA). Then, in order to further accelerate

the search speed, they applied the ant colony system (ACS)

algorithm [28] to solve this problem, and obtained better results

[29]. As a fixed encoding scheme is applied by these

approaches, they all suffer from the problem of redundant

search space so that the convergence speed is slow. In addition,

since no effective heuristic for meeting the deadline constraint

is designed in these approaches, most of them struggle to find

feasible solutions when the scale increases or the constraint

tightens.

Aiming at these problems, in this paper, we are going to

propose an intelligent cloud workflow scheduling system

which contains a more practical computing model and a more

effective scheduling algorithm. The system is designed from

the perspective of ordinary users. The position of the system is

defined as a middleware between users and IaaS clouds.

Compared with traditional scheduling systems, the proposed

system makes the scheduling of cloud workflows more

intelligent with respect to the following two aspects. First,

speaking from the computing model, the computing capacity of

VM is associated with both CPU and memory.

Correspondingly, for tasks in the workflow, besides the size,

each task’s memory demand is also considered, and the

execution time of task is estimated according to both CPU and

memory. Moreover, different from the works that assume the

execution time of all tasks on all kinds of VMs being known in

advance, the proposed system estimates the execution time

based on historical data, and thus it requires less priori

knowledge. Meanwhile a feedback procedure is designed in the

system to make the execution time estimation more accurate.

Second, an adaptive ant colony optimization (A-ACO) method

is proposed and utilized in the system to tackle the cloud

workflow scheduling problem. Enlightened by the foraging

behavior of ants, Dorigo et al. [30] first proposed the ant colony

optimization (ACO) algorithm to solve the traveling salesman

problem (TSP). Later, they proposed an improved ACO variant

called ACS [28], which has been successfully employed for

various problems [31]-[34]. The proposed A-ACO is designed

on the basis of ACS. But considering the large-scale and

constrained characters of the problem, some novel techniques

are also designed to make A-ACO more effective and efficient.

Specifically, the novelty and adaptiveness of the proposed

A-ACO scheduling method are shown in two aspects:

1) By introducing an idea of dynamically changing search

space, a new routing strategy and a new pheromone matrix

are designed to restrict every move of each ant, so that the

search space of A-ACO can be shrunk a lot. Thus A-ACO

has the ability to adapt to workflows with different scales.

2) Aiming at the only constraint of the problem, i.e. deadline

constraint, we have designed an effective heuristic with a

dynamic weight. The proposed heuristic can directly guide

ants to find feasible solutions, and the dynamic weight is

able to automatically control the time when the heuristic

works according to the status of the colony. Although there

have been some studies which handle the constraints by

changing fitness functions or weights [35], the idea of the

dynamic weight in this paper is unique by adjusting the

parameters of the algorithm rather than the objective

function.

To demonstrate the proposed scheduling system, extensive

experiments are conducted on four types of scientific

workflows which consist of both data-intensive and

compute-intensive tasks. Each type is tested in four different

scales with three different deadline settings. Experimental

results show the effectiveness and efficiency of the proposed

approach.

The rest of this paper is organized as follows: in Section II,

the architecture of the proposed scheduling system is shown.

Section III and Section IV illustrate two important modules, the

estimation module and the scheduling module, respectively.

Experimental results are shown in Section V and conclusions

are finally drawn in Section VI.

II. CLOUD WORKFLOW SCHEDULING SYSTEM

Fig. 1 shows the architecture of the proposed cloud workflow

scheduling system. We can see that the system consists of four

modules: estimation module, scheduling module, reservation

module, and execution module.

To schedule a workflow onto an IaaS cloud, seven steps

should be taken:

1) At first the estimation module acquires the workflow

specification and the QoS requirement from the user, and

the VM specification from the cloud service provider. In

line with the problem studied in this paper, the QoS here is

defined as the deadline constraint.

2) Based on the acquired information, the estimation module

will estimate the execution time of each task on every

kinds of VM.

3) Then, taking the execution time matrix, the scheduling

module will make a complete execution plan about how

many VMs should be leased, when to lease and release

them, and which task should be assigned onto which VM.

The scheduling module consists of two components:

optimization algorithm and simulation. The optimization

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

algorithm generates schedules and gives them to the

simulation component to judge whether the schedules can

satisfy the constraints and how good the schedules are.

Then utilizing the simulation results, the optimization

algorithm keeps finding better schedules until the stop

criterion is met. Usually the stop criterion is defined as the

maximum number of simulations or the execution time of

the algorithm. As aforementioned, the main optimization

algorithm is A-ACO. However, sometimes when the

deadline constraint is very tight, A-ACO may be not

capable to find feasible solutions. Under the

circumstances, the Heterogeneous Earliest-Finish-Time

(HEFT) [36] algorithm will be utilized to at least provide a

feasible solution. If even HEFT cannot generate a feasible

solution, the application will be rejected.

4) After getting a near-optimal schedule, the scheduling

module tells the reservation module the amount and the

types of the required VMs, and gives the execution plan to

the execution module.

5) The reservation module then leases VMs from the service

provider and prepares them ready.

6) When the execution module is informed that the runtime

environment is prepared, it starts sending commands to

the cloud to execute the workflow, telling the cloud which

VM should be started or power-off.

7) During the execution, it collects the information about the

real runtime of tasks and return such information to the

estimation module as the feedback. If there is another

similar workflow which is going to be executed, the

feedback information can help in improving the precision

of execution time estimation. After running the whole

workflow, the execution module is also responsible for

returning the final result to the user.

Among these four modules, the former two, estimation

module and scheduling module, are the core of the whole

scheduling system, because they together decide whether an

effective and economical schedule can be generated. The latter

two, reservation module and execution model, are designed to

interact with cloud providers, which are all about programming,

and we do not focus on them in this paper. In following sections,

the estimation module and the scheduling module will be

described in detail.

III. ESTIMATION MODULE

Workflow scheduling on heterogeneous computing

resources has been studied over the years [36], [37]. However,

for the cloud workflow scheduling problem studied in this

paper, new computing models are needed to characterize the

workflow applications and the public IaaS clouds. Execution

time estimation is conducted based on the computing model.

The models about workflows and VMs are described in this

section. Relative notations used in the model description are

listed in Table I.

A. Workflow Specification

Workflow is represented by the task precedence graph (TPG)

[33], [38], which is a directed acyclic graph (DAG) denoted as

G(V, E). The set of vertices V = {v1, v2, …, vn} represent the n

tasks in the workflow, and each edge eij = (vi, vj) in the edge set

E means that task vi is a direct predecessor of task vj. In the case

of scheduling workflows on clouds, every edge has a weight to

represent the size of data which is transferred from the parent

task to its descendant tasks. Additionally, each workflow has a

deadline D defined by consumer as the constraint. A simple

workflow is shown in Fig. 2.

In a workflow, we assume that each task is atomic for

specific responsibility which means it cannot be further divided

or interrupted during execution. According to [39], most

scientific workflows are data-intensive so that the memory may

influence the execution greatly. It is common that different

tasks require different sizes of memory. Generally, there are an

upper bound and a lower bound of memory size associated with

each task. If the provided memory is smaller than the lower

bound, the task is not capable to run. When the given memory is

within the two bounds, the execution of the task can be

Fig. 2. A simple workflow with 8 tasks.

Fig. 1. Architecture of the cloud workflow scheduling system.

User

Estimation

Module

workflow

specification

QoS requirement

execution

 time matrix

Reservation

Module

VM demand

Execution

Module

execution schedule

ready

feedbackreturn result

VM specification

apply VMs

command

execution

information

VMs

PMs

Scheduling System Service Provider

Optimization

Algorithm
Simulation

Scheduling Module

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

accelerated with the growing memory until the given memory

exceeds the upper bound. Such phenomenon is attributed to the

fact that the growth of memory in this range can reduce the

probability of page faults (hard faults), which does help in

decreasing the tendency of memory swap [40]. Also different

tasks have different degrees of parallelism and different

speed-up ratios. Thus the attributes of task vi (i = 1, 2, …, n) are

shown as follows:

 tsi—The task size. In this paper, we assume that the size of

each task in the workflow is prior knowledge and we

directly use the execution time of running the task on a

VM instance which have only one processor and 1 GB

memory to represent the task size [3], [13], [26].

 ubi—The upper bound of memory demand.

 lbi—The lower bound of memory demand.

 dpi—The max degree of parallelism of task vi.

 sui—The speed-up of task vi. It is defined as how much

speed-up ratio one processor could bring. If 3 processors

could reduce the execution time of vi by half, the sui is

calculated as 2/3.

 dsi—The output data size of task vi.

B. Virtual Machine Model

Enlightened by the configurations of VMs in different public

IaaS clouds like Amazon EC2 and Google Compute Engine, we

denote each VM type VMj with the following attributes:

 cnj—The computing capacity of virtual CPUs in VMj.

 msj—The memory size of VMj.

 upj—The unit price of VMj.

In addition, as pointed out in [41], [42], the processing

capacity of a VM usually degenerates more or less during the

execution. Thus any VM instance, i.e. the computing resource,

denoted as rk, has a performance degradation rate degk. For the

sake of clarity, we use j

kr to represent that rk belongs to the VM

type VMj. The degradation information is updated by the

feedback procedure in the scheduling system.

C. Execution Time Estimation

When estimating the execution time of a task, the

relationship between the execution time and the memory size is

extremely hard to build accurately in practice, since the

execution time of a task is related not only to the memory size

and speed, but also to the memory pressure, locality, etc. [43].

Still, it is found that the miss rate of the main memory decreases

when memory size grows [23]. Besides, usually the detailed

hardware information is transparent to customers on a public

IaaS cloud. Thus there is not a universal formula which can

precisely characterize the relation among memory, CPU, and a

task’s execution time on cloud. But the execution time of a task

can be still calculated based on the statistical running

information in real applications [44], [45].

If there is not historical information that can be referred or

the real test for all tasks on all kinds of VMs causes too much

extra expenditure, we here can use a simple model to estimate a

task’s execution time based on the empirical study made by

Qureshi et al. [46]. They found that for some data-intensive

works like database task, an n-fold increase of memory size

would bring roughly the same fold decrease of page faults. For

some compute-intensive works, the number of page faults is

independent of memory size. Thus in our model, an attribute pti,

denoting the percentage of memory-related execution time out

of the whole execution time, is utilized to divide a single task

into two parts: memory-related part and CPU-related part.

Separately, these two parts can be accelerated by increasing the

memory size or CPU capacity. For the CPU-related part, we

can use the attributes dpi and sui to make a rough estimation.

However, for the memory-related part, the scale of memory

size to execution time depends on task and hardware which

needs to be measured practically [46], also such a practice is

recommended by real cloud providers [47]. Thus a scale

parameter between memory size and execution time, denoted as

sc, is considered. Supposing that task vi is scheduled onto VM

instance rk of type VMj, if the upper bound of memory demand

ubi is larger than VMj’s memory size msj, the execution of vi is

carried out based on msj; otherwise ubi is used during the

execution. Overall the execution time of vi on rk is estimated by

 
 

 
 ,

1
min ,

1 deg
min ,

i i
i i

i jj k

i k

j i i

ts pt
ts pt

sc ub ms
EXE

cn dp su

 
   

  
 
 
 
 

.(1)

To prove the effect of memory size and give an example of the

proposed estimation method, we have conducted an experiment

which is shown in the supplemental material of this paper.

Without loss of generality, other estimation methods of the task

execution time can be also applied in the estimation module.

TABLE I

NOTATIONS USED IN MODEL DESCRIPTION AND PROBLEM DEFINITION

Notation Meaning

i, j, k index or counter

G a workflow

V set of vertices (tasks)

E set of edges (data transfers)

vi the i-th task in G

eij the edge between vi and vj

D deadline

tsi task size of vi

ubi upper bound of memory demand of task vi

lbi lower bound of memory demand of task vi

dpi max degree of parallelism of task vi

sui speed-up of task vi

dsi output data size of vi

VMj the j-th virtual machine type

cnj capacity of virtual processors of VMj

msj memory size of VMj

upj unit price of VMj

rk the k-th virtual machine instance

degk performance degradation of rk

pti percentage of data processing time of vi

sc scale of memory size to execution time

EXEi estimated execution time of vi

S a complete schedule

R set of resources to lease

M set of mapping relationships

TC total cost

TT total time

LSTk lease start time of rk

LETk lease end time of rk

bt boot time to initialize a VM

mi mapping tuple of vi

STi start time of vi

ETi end time of vi

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 Moreover, the data transfer time among VMs is omitted in

the estimation module. Because usually a workflow is executed

on a single data center and nowadays, data centers are built on

the shared storage architecture [39], providing object storage

service in which they can transfer static data by changing file

index directly without costing any time. If the data transfer

process is necessary to be considered, the time can be

calculated according to the models shown in [13], [15].

IV. SCHEDULING MODULE

After receiving the estimated execution time of the tasks, the

scheduling module will generate an effective and economical

schedule. At first, the formal definitions of the objective and the

constraints of the cloud workflow scheduling problem are

given based on the aforementioned models. Then the schedule

generation method is introduced. Finally, the specially

designed A-ACO method is proposed in this section.

A. Problem Definition

In our system, the goal is to find such a schedule of a

workflow, based on which the expenditure of executing the

workflow on an IaaS cloud is minimized under the deadline

constraint D. A complete schedule, represented as S = (R, M,

TC, TT), consists of four parts: a set of resources to lease R, a

set of mapping relationships between tasks and resources M,

the total cost TC, and the total time TT. R = {r0, r1, …, rl-1} is the

set of l VM instances, which will be used to execute tasks. It is

worth noting that the size of R is less than or equal to the

number of tasks, l<=n, as different tasks can be scheduled onto

one VM instance. In addition, for each VM instance rk, two

lease attributes are considered when it is used: 1) lease start

time LSTk, and 2) lease end time LETk. The lease start time LSTk

of a VM instance is the time when it first receives a task and the

lease end time LETk is the time when it finishes the last task

scheduled onto it. Additionally the boot time to initialize a VM,

denoted as bt, should be also considered when calculating the

lease start time since most providers begin charging once the

VM is power-on. M = {m1, m2, …, mn} whose size is equal to

the number of tasks n, is the mapping set with n tuples,

maintaining allocation relationships between tasks V and

resources R. Each tuple mi = (vi, rk, STi, ETi) indicates that task

vi is arranged onto the resource rk, is expected to start executing

at time STi, and is estimated to complete at time ETi.

Comprehensively, the total cost TC and the total execution

time TT of a workflow are calculated by:
-1

0

l
k k

j

k

LET LST
TC up



 
  

 
 , (2)

1 2max{ , ,..., }nTT ET ET ET . (3)

where is the unit time to lease a VM in IaaS, specified by

service providers. Under the pay-as-you-go model, consumers

pay for every unit time of the leased VM, even the unit time is

partially utilized.

Accordingly, the problem studied in this paper can be

formally defined as follows:

minimize

subject to

TC

TT D
 (4)

where D is the deadline of the workflow.

B. Encoding

Though theoretically the amount of resources in an IaaS

cloud is infinite, to define the search domain of the proposed

approach, an upper limit of available resources is calculated as

in [13] by multiplying the maximum number of tasks that can

be executed in parallel with the number of available VM types:

AR p q  , (5)

where p is the maximum number of tasks that can run in parallel

and q is the number of VM types. Under such a search domain

setting, the maximum number of instances of each VM type is p,

since there are at most p tasks running at the same time. Before

scheduling, these available resources are indexed from 0 to

|AR|-1. The instances which share a same VM type are ordered

consecutively. Taking the workflow in Fig.2 as example, the

maximum number of tasks that can be executed in parallel is 3:

{t3, t4, t5} or {t3, t4, t7}. Suppose that there are 3 VM types VM0,

VM1, and VM2, then for this workflow, 3·3=9 VM instances are

available to lease. These 9 VM instances are ordered from 0 to

8: {r0, r1, r2} belonging to VM0, {r3, r4, r5} belonging to VM1,

and {r6, r7, r8} belonging to VM2.

When meta-heuristic algorithms are employed to solve real

problems, the basic prerequisite is to encode the problem

properly. Observing the schedule S, we can find that the most

important part in S is the mapping relationship M between tasks

and computing resources, because the rest of S can be derived

from M. This observation inspires us to encode the set M to

represent the solution of the problem. In the algorithm, an

integer array with n elements arr[1…n] is used to represent the

mapping set M, the index i of which denotes task vi and the

corresponding value arr[i] represents resource rarr[i] that vi is

scheduled onto. A simple solution code is depicted in Fig. 3. In

the example, the value of each element is within [0, 8] and the

7th value of the array is 3, indicating that task v7 is scheduled

onto resource r3.

Although we get infinite resources in an IaaS cloud, the code

scheme designed in this paper still allows the occurrence that

some tasks wait for some occupied resources to release.

Because under the pay-as-you-go basis, sometimes, different

tasks using a same resource can make full use of the resource’s

lease time, so that the total cost may decrease.

C. Decoding

After encoding the mapping set M, a decoder is designed to

translate it into a complete schedule. The pseudo code of the

decoder is depicted in Algorithm 1.
Fig. 3. A simple hypothetical array and the explanation of the array.

1 2 3 4 5 6 7 8

0 3 1 0 2 6 3 3

index

value

v1 v2 v3 v4 v5 v6 v7 v8

r0 r3 r1 r0 r2 r6 r3 r3

task

resource

code array

task-resource mapping

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

To begin with, the set of resources R and the mapping set M

are initialized empty and the total cost TC and the total time TT

are set to 0 (Line 1). Then, the decoder deals with the tasks one

by one in order (Line 2). Suppose that the decoder is arranging

task vi. First, obtaining the index of the allocated resource for vi,

we check whether resource rarr[i] is already leased. Two contrary

cases are considered:

1) If resource rarr[i] is already in R which means this resource

has been used by some other tasks before, we do not need

to lease it again (Line 3). Then we find all parents of task

vi (Line 4). If vi has no parent, it starts running

immediately once the allocated resource rarr[i] is free (Line

5). Otherwise, it will wait until two conditions are

satisfied: a) all its parents finish running; b) the resource

rarr[i] is free (Line 6-9). The maximum end time of the

parents is denoted as maxET.

2) Otherwise, we should lease rarr[i] at first. In the decoder, it

is accomplished by instantiating a new VM instance and

adding it into R (Line 11-12). Note that the VM type of

rarr[i] can be obtained through ⌊arr[i]/p⌋, because all the

available resources are indexed in the order of VM type.

Subsequently all parents of vi are found (Line 13). If no

parent exists, vi begins to run when the corresponding VM

instance rarr[i] boots up and the lease start time of rarr[i] is

set to 0 (Line 14-15). Otherwise task vi starts when its all

parent tasks finish and the lease start time of rarr[i] is STi-bt

where STi is the start time of vi (Line 16-21).

Once the start time of vi is determined, the execution time

EXEi can be obtained according to (1) (Line 22). Then the end

time of vi can be calculated by ETi=STi+EXEi. As for rarr[i], its

lease end time is updated to the end time of task vi, LETarr[i]=ETi

(Line 23-24).

Finally when all values of the elements in a mapping tuple mi

are obtained, we add mi into M (Line 25-26). All the above

procedures continue until all tasks are scheduled. Then the total

cost TC and the total time TT of the workflow under such

arrangement are calculated according to (2) and (3) (Line 28).

Eventually an integrated schedule S is generated (Line 29).

D. Adaptive Ant Colony Optimization Approach

As presented in (4), the problem studied in this paper is a

constrained optimization problem. To deal with such a problem,

a feasibility-based rule to pairwise compare individuals

proposed by Deb [48] is incorporated into the A-ACO approach.

Whenever two solutions compete with each other, three rules

are applied to determine which one is better: 1) any feasible

solution is better than any infeasible solution; 2) between two

feasible solutions, the one with better objective function value

is preferred; and 3) between two infeasible solutions, the one

with smaller degree of constraint violation is better.

1) Overview of the ACO Algorithm

ACO was first developed by Dorigo et al. [30], [49]. The

underlying idea of ACO is to simulate the routing method of

ants. Generally an ACO algorithm is composed of two

procedures:

1. Solution Construction—During each iteration, a set of

artificial ants construct solutions by selecting solution

elements step by step in a finite set of available solution

elements, guided by a stochastic mechanism. Components

with more pheromone are more attractive to ants.

2. Pheromone Updating—The pheromone update procedure

is used to increase the pheromone values associated with

good solutions, and to decrease those with poor ones.

Through introducing different pheromone management

methods, various ACO variants have been developed [30], such

as ant system (AS) [50], ant colony system (ACS) [28],

max-min ant system (MMAS) [51], etc. In this paper, the

proposed A-ACO is developed based on ACS.

Two hallmarks show the differences between ACS and other

ACO algorithms: 1) the pseudo random proportional rule

applied in the solution construction procedure. Under this state

transition rule, the artificial ants, with a certain probability, will

directly choose the solution components associated with the

maximum product of pheromone and heuristic values, rather

than playing the roulette wheel selection strategy.

Consequently, ACS takes full advantage of the past search

experience of ants and obtains a fast convergence speed; 2) two

pheromone updating rules, namely global updating and local

updating. The former one only allows the global best ant to

Algorithm 1. Decoder

Input: workflow G; VM types VM; code array arr[n];

 maximum parallel tasks number p;

Output: A schedule S;

Starts

01 Initialization: R=∅, M=∅, TT=0, TC=0;

02 for i = 1 to n

03 if R contains rarr[i] then

04 Get all parents of vi, denoted as pari;

05 if pari == ∅ then STi = LETarr[i];

06 else

07 maxET = max{ETk | vk∈pari};

08 STi = max(LETarr[i], maxET);

09 end if-else

10 else

11 Instantiate rarr[i] with type VMarr[i]/p;

12 R = R ∪ {rarr[i]};

13 Get all parents of vi, denoted as pari;

14 if pari == ∅ then

15 STi = bt; LSTarr[i] = 0;

16 else

17 maxET = max{ETk | vk∈pari};

18 STi = maxET;

19 LSTarr[i] = STi – bt;

20 end if-else

21 end if-else

22 calculate EXEi according to (1);

23 ETi = STi + EXEi;

24 LETarr[i] = ETi;

25 mi = (vi, rarr[i], STi, ETi);

26 M = M ∪ {mi};

27 end for

28 calculate TC and TT according to (2) and (3);

29 S = (R, M, TC, TT);

Ends

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

deposit pheromone, which is beneficial for fully mining the

neighborhood of the global best solution. On the contrary, local

updating rule is used to shuffle the tours. Every ant decreases

the pheromone values in its tour instead of depositing

pheromones in order to make the edges traveled in current

iteration less desirable in the next iteration. In this way, the

diversity of the search is kept.

These two advantages of ACS give rise to its usage in the

following proposed A-ACO in this paper.

2) Adaptive Ant Colony Optimization (A-ACO)

The overall flowchart of the proposed A-ACO is shown in

Fig. 4. There are five main components: initialization, solution

construction, fitness and constraint violation evaluation, local

pheromone updating, and global pheromone updating.

Following, these five components are introduced in detail.

a) Initialization

In the initialization phase, the pheromone matrix is

initialized and the heuristic information is calculated in order to

make preparation for the solution construction process.

Pheromone. Assume there are n tasks in the workflow and

the maximum number of available resources is |AR|. Then we

can maintain a n×|AR| pheromone matrix PH with element

(,)i k denoting the pheromone value of arranging tasks vi onto

resource rk.

In the ACS algorithm, the initial pheromone value 0 is

problem-dependent. In our work, it is set as

0

1.0 heft

heft

TT

TC n D
  


, (6)

where TCheft is the total cost and TTheft is the total execution time,

both produced by the Heterogeneous Earliest-Finish-Time

(HEFT) algorithm [36] which arranges every task onto its most

“suitable” resource; D is the predefined deadline. The concept

“suitable” is defined by the following heuristic.

Heuristic. When ants select VMs for tasks, not only the

pheromone contributes, but also the associated heuristics

should make difference. In this paper, to accelerate the

convergence speed of A-ACO, two kinds of heuristic, which

are designed to directly cater to the objective in (6), i.e. TC and

TT, are applied in the solution construction process.

The first one is the cost heuristic, which describes the cost of

running task vi on VMs with type VMj, denoted as costi,j. Since

our objective is to minimize the expenditure, a relatively

smaller value of costi,j implies that the resources with the type

VMj are more suitable for task vi than others. It should be noted

that in the initialization process, we have not leased any VM

instance yet. Thus we can only measure whether a VM type,

rather than a specific VM instance, is suitable for a task. The

costi,j is estimated by

 
 

 
,

1
min ,

min ,

i i
i i

i j

i j j

j i i

ts pt
ts pt

sc ub ms
cost up

cn dp su

 
   

  
 
 
 
 

. (7)

The second heuristic information applied in the approach is a

dynamic value calculated during the solution construction. In

an IaaS cloud with enough computing resources, if a schedule

cannot fulfill the deadline constraint, it is highly likely that

many tasks are assigned onto a same VM instance. Thus, the

second heuristic information is designed based on the number

of tasks that has been assigned to a VM, denoted as ntak. During

the solution construction, if there are already nk tasks assigned

to rk, then ntak is calculated by

k

k

n n
nta

n


 (8)

where n is the total number of all tasks.

Combined the two aforementioned heuristics together, the

heuristic for task vi choosing resource rk with type VMj (denoted

as (,)i k) is given by

 

 ,

(,)
k

i j

nta
i k

cost




  , (9)

where α, called the governor, is used to sense the stage of the

algorithm and correspondingly adjust the weight of the nta

heuristic. It is associated with the number of infeasible

solutions. For example, suppose there are 100 ants in the colony.

At the i-th iteration, 25 ants build feasible solutions and 75 ants

build infeasible solutions. Then at the (i+1)-th iteration, α=75.

Through the governor, the algorithm can adjust its preferences

to different resources adaptively.

If the deadline constraint is loose, most of the ants will be

able to construct feasible solutions. In such situation, we do not

need to lease too much VMs and the governor α will be always

close or equal to 0, making the nta heuristic contribute little to

the selection. If the deadline constraint is tight, most solutions

found will be infeasible at the early stage of the algorithm. At

this point, we want the algorithm to find feasible solutions

rather than optimizing the total cost. Meanwhile, α is close to

Fig. 4. Flowchart of the proposed A-ACO.

Begin

Initialization

i = 1

Solution construction

Fitness and constraint

violation evaluation

Local pheromone updating

i ++

i > ColonySize

F

Global pheromone updating

T

Is the criterion met?

F

End and return

the best solution

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

the colony size, making the nta heuristic play a key role in the

resource selection. Attracted by it, the artificial ants tend to

choose new resources at this stage rather than use the already

leased VMs. At the later stage of the algorithm, when feasible

solutions are found, α decreases and the nta heuristic gives way

to the cost heuristic. Then, the algorithm truly begins to

optimize the objective rather than find feasible solutions.

Overall, combining the feasibility-based rule and the dynamic

weight of nta, A-ACO is able to not only change objectives

during the optimization process but also change the

corresponding heuristics adaptively.

b) Solution Construction

In the A-ACO algorithm, we have designed a novel solution

construction method to shrink the search space of the problem

thus decreasing the time complexity of the algorithm. It is

shown in Algorithm 2. This construction method is designed

based on two facts: a) when we arrange a task, unleased

resources with the same VM type are actually identical; b) once

a resource is leased to run a task, it differs from other resources

as it owns a unique computing ability degradation (deg) and

lease start/end time (LST/LET). Thus it is unnecessary to

consider every available resource in AR for every single task.

To better understand the solution construction process, the

example shown in Fig. 5(a), which corresponds to Fig. 3, is

taken as an explanation: originally, there are 9 instances in AR.

At first, three VM instances r0, r3, r6 whose indexes are

minimum in their type are put into the option set os (Step b).

According to the first fact, {r1, r2, r4, r5, r7, r8} will not be

considered. Then A-ACO selects one resource for task v1

according to the pseudo random proportional rule [28] (Step

c1-c3). Suppose resource r0 is selected (Step c4). According to

the second fact, now r0 is different from r1 and r2. Then, we add

the next several VMs into the option set (Step c5). The number

of the added VMs is an important parameter of A-ACO, which

is denoted as AD. In the example, AD is set to 1, thus r1 is added.

Next, A-ACO selects resources for the other tasks one by one.

After allocating task v4, we can find that r1 is already in os, so

we keep os unchanged. When all tasks are allocated, one

solution arr is generated. What calls for special attention is that

all selection behaviors are taken under the lower memory

bound constraint that a task cannot be assigned to a VM which

has smaller memory size than the task demands.

Since the optional components in each step are limited in the

option set os whose size is always smaller than or equal to |AR|,

the search space of the A-ACO is always smaller than n|AR|. To

compare the search spaces of A-ACO and the traditional ACO

method, the construction method of traditional ACO is shown

in Fig. 5(b). The parameter AD is set to accommodate the ACS

algorithm, and we will investigate this parameter sufficiently in

the experiment section.

c) Fitness and Constraint Violation Evaluation

In this scheduling problem, the total cost TC is considered as

the fitness of a solution and whether a solution violates the

deadline constraint is determined according to the total time TT.

If the total time TT is less than or equal to the pre-defined

deadline D, the corresponding solution is feasible. Otherwise

the solution is infeasible. Between two infeasible solutions, the

one with smaller TT is better than the other.

d) Pheromone Updating

Whenever an ant builds a solution, the algorithm updates

pheromone values according to the local updating rule. After all

ants finish their solution constructions, pheromones are further

updated according to the global updating rule. These two rules

share a same updating formula symbolically which is

(,) (1) (,) (,)i k i k i k         . (11)

The difference between these two rules is the value of Δφ(i, k).

Global Updating. In the global updating rule, Δφ(i, k)is

calculated by

Algorithm 2. Solution Construction

Input: pheromone matrix PH; heuristics η(i, k);

available resources AR

Output: an array code arr[n];

Auxiliary Storage: option set, denoted as os;

step a: os = ∅, arr[n] = ∅;

step b: Initialize os by including the first instance of each

VM type;

step c: for i = 1 to n

 step c1: randomly generate a number 0<X<1 and

compare X with a threshold value X0;

 step c2: if X<X0, the resource rk from the os with the

largest value of φ(i, k)·η(i, k)is selected.

step c3: Otherwise, the resource is chosen through

roulette wheel strategy. The probability of choosing rk

is calculated by

(,) (,)
, if ,

(,) (,)(,)

0 otherwise.

u

k

r os

i k i k
r os

i u i uP i k

 

 



  




 (10)

step c4: arr[i] = k;

 step c5: os=os∪{rk+1, rk+2,……, rk+AD};

(a)

(b)

Fig. 5. Solution construction methods. (a) A-ACO. (b) Traditional ACO.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

1/ , if []==
(,)

0, otherwise

gbest gbestTC arr i k
i k


  



, (12)

where gbest is the global best solution found so far.

Local Updating. In the local updating rule, Δφ(i, k) is

calculated by

0(,) , []==ki k arr i   , (13)

where φ0 is the initial pheromone value calculated by (6).

Overall, through the collaboration of the adaptive nta

heuristic and the pairwise comparison method [48], the

proposed A-ACO gains a fast speed to enter the feasible zone of

the search space. Meanwhile through the collaboration of the

cost heuristic and the novel solution construction method,

A-ACO is capable to select suitable resources for different

tasks properly.

V. EXPERIMENTAL STUDIES

A. Experimental Settings

To verify the feasibility and efficiency of the proposed model

and A-ACO, four different types of workflows which have

been widely applied in this domain are used in the experiments:

Montage, CyberShake, LIGO, and SIPHT [52]. Montage was

created by the NASA/IPAC Infrared Science Archive to

generate custom mosaics of the sky. The CyberShake workflow

is used to characterize earthquake hazards, in which most of

tasks can be seen to be compute-intensive. The LIGO Inspiral

Analysis is used to analyze the gravitational wave data

produced by various events in the universe. The SIPHT is an

application about bioinformatics which uses a workflow to

automate the search process for sRNA encoding-genes for all

bacterial replicons in a specific database. Details about these

four kinds of workflows can be found in [52]. For each kind of

workflow, four different scales are considered in the

experiments. The number of tasks in each workflow is shown in

Table II.

As for the computing resources, all VM instances considered

in this paper simulate from the Amazon EC2 on-demand

instances. Three types of VMs are adopted: general-purpose,

compute-optimized, and memory-optimized. Moreover, there

are four or five configurations in each type. Since the

processing capacity of each VM is not linearly proportional to

the number of virtual CPUs in the Amazon EC2, we apply the

ECU which is a unified measurement of processing capacity to

represent the number of CPU. Details about VM configurations

and prices are shown in Table III. Additionally, the unit time to

lease a VM instance in the Amazon EC2 is 1 hour.

In order to conduct the simulation, for each task, a

percentage of memory-related execution time pt, an upper

bound of memory demand ub and a lower bound of memory

demand lb are generated according to their own properties as

described in [52]. Before generating a specific number of pt, we

classify the tasks into three categories: compute-intensive,

general, and data-intensive. For these three kinds of tasks, pt is

randomly generated within (0, 0.3], (0.3, 0.7], and (0.7, 1.0)

respectively. Referring to the two bounds of memory demand,

for small tasks, ub is randomly generated within [1.0, 7.5) and

lb is set to 0; while for big tasks, ub is in the range of [7.5, 30)

and lb is in the range of [1.0, 7.5). The range [30, 120) of ub is

specially prepared for the extraordinarily large tasks, which

require vast size of memory and their lb values are generated

within [7.5, 30). It should be mentioned that all these random

values follow the uniform distribution and are generated only

once for all algorithms. For real applications, we recommend

readers to check the peak memory usage, page fault rate, data

throughput of tasks before deciding the aforementioned

parameters based on the methods and measurements used in

[14], [23], [52].

Additionally, the boot time of each VM instance in the

experiments is set to 97 seconds [26]. The degradation of the

processing capacity of a VM instance follows a normal

distribution N(0.12, 0.10) with maximum value of 0.24 [42].

Moreover, to facilitate the experiments, the scale of memory

size to execution time sc is set to 1.

To verify the adaptability of the proposed approach to

different deadline settings, three different deadlines are

generated according to:

3

()
fastest

D fastest slowest fastest
t slowest


   

 
, (14)

where slowest is the execution time of the workflow obtained

by mapping each task onto the cheapest VM while satisfying

the lower bound of memory demand; fastest is the execution

TABLE IV

ALL WORKFLOWS TESTED IN THE EXPERIMENT

Kind Name

Montage

M_25_1 M_50_1 M_100_1 M_1000_1

M_25_2 M_50_2 M_100_2 M_1000_2

M_25_3 M_50_3 M_100_3 M_1000_3

CyberShake

C_30_1 C_50_1 C_100_1 C_1000_1

C_30_2 C_50_2 C_100_2 C_1000_2

C_30_3 C_50_3 C_100_3 C_1000_3

LIGO

L_30_1 L_50_1 L_100_1 L_1000_1

L_30_2 L_50_2 L_100_2 L_1000_2

L_30_3 L_50_3 L_100_3 L_1000_3

SIPHT

S_30_1 S_60_1 S_100_1 S_1000_1

S_30_2 S_60_2 S_100_2 S_1000_2

S_30_3 S_60_3 S_100_3 S_1000_3

TABLE II

NUMBER OF TASKS IN EACH WORKFLOW

Name small medium large xlarge

Montage 25 50 100 1000

CyberShake 30 50 100 1000

LIGO 30 50 100 1000

SIPHT 30 60 100 1000

TABLE III

CONFIGURATIONS AND PRICES OF DIFFERENT VMS

Type Name ECU Memory(GB) Price($/hour)

General

Purpose

m3.medium 3 3.75 0.070

m3.large 6.5 7.5 0.140

m3.xlarge 13 15 0.280

m3.2xlarge 26 30 0.560

Compute

Optimized

c3.large 7 3.75 0.105

c3.xlarge 14 7.5 0.210

c3.2xlarge 28 15 0.420

c3.4xlarge 55 30 0.840

c3.8xlarge 108 60 1.680

Memory

Optimized

r3.large 6.5 15 0.175

r3.xlarge 13 30.5 0.350

r3.2xlarge 26 61 0.700

r3.4xlarge 52 122 1.400

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

time of the workflow obtained by allocating each task to a VM

instance of the most expensive VM type. In addition, t is set

to 1, 2, and 3 for the three deadlines, respectively. The larger t

is, the stricter the deadline is. What calls for special attention is

that the period slowest–fastest is not trisected in (15), because

for some workflows, the value of slowest is two orders of

magnitude higher than the fastest. If the period slowest–fastest

is trisected, even the strictest deadline:

() / 3D fastest slowest fastest   (15)

is very easy for most approaches to reach. Thus in (14), the

multiple relationship between the fastest and the slowest is

considered to make a fair deadline setting.

On the basis of the above description, a nomenclature

“name_size_deadline” is used to identify each specific

workflow. All workflows tested in the experiment are listed in

Table IV, such as M_25_1 refers to the Montage workflow with

total 25 tasks and the most relaxed deadline.

To testify the efficiency of the proposed A-ACO, we

compare it with two other representative meta-heuristic

methods, i.e. the PSO method [13] and the ACS [29] method.

The PSO method [13], [17] can be taken as the first

evolutionary algorithm which is used to the problem studied in

this paper, and it has outperformed some well-known heuristic

methods according to their experimental results. The ACS

method [29] was proposed recently which has achieved very

good performance. To make these two approaches adapt to the

situation described in this paper, the encoding and decoding

schemes proposed in Section III are embedded into these

algorithms. In addition, the HEFT algorithm is tested to make a

baseline of the performance. Since the HEFT method tends to

assign new VMs to tasks, in most cases it will get feasible

solutions as tasks will never wait for an occupied VM.

 For the parameters in A-ACO, we directly use the settings in

canonical ACS [28], X0=0.9 and ρ=0.1. β is set to 5. The colony

size is set to 10 and the number of generation is 500. With same

colony size and generation number, other parameters of the

compared ACS method are set according to [29]. As for PSO,

its parameters are set as recommended in [13] with 100

particles and 250 generations. Additionally, 20 independent

runs for each algorithm on every workflow are conducted,

based on the simulation tool CloudSim [53]. Besides, although

HEFT is a deterministic algorithm, due to the randomness of

the VM’s degradation on processing capacity, its results in

different runs are also slightly different, especially for some

large workflows.

B. Investigation of the Parameter AD

AD is an important parameter during the solution

construction. If it is set to a small value, the search space will

grow in a low speed, so that the execution time of A-ACO can

be relatively short. But the performance will decrease, since the

exploration ability of the algorithm is limited. Contrarily, if it is

set to a big value, the search space will grow rapidly, the

execution time of A-ACO will be long, and the performance

will increase. Here we use an xlarge instance M_1000_1 to find

how this parameter affects the execution time and the

performance. Since the deadline constraint is loose, basically

A-ACO can always get feasible solutions so that we can

compare the objective value.

AD is set to six values {1, 2, 3, 4, 5, 20}. Other settings are

kept unchanged. Each configuration is tested 20 times to get the

mean value. Experimental results are shown in Fig. 6.

From the figure, we can see that the execution time increases

linearly with the growth of AD. Regarding the objective value,

we can find that it decreases rapidly at the beginning. However,

when AD increases to 5, the objective value stops decreasing

and holds on that level thereafter. Converted the measurement

from millisecond into minute, the execution time of A-ACO

with AD=5 is 6.935 minutes which is still within an acceptable

range. However only judging by M_1000_1, AD=4 also seems

to be a rational choice since the difference between 4 and 5 is

negligible on Fig. 6. To select an appropriate value between 4

Fig. 6. Experimental results about parameter AD.

0 5 10 15 20

152

154

156

158

160

162

164

166

 Objective

 Time

AD

O
b

je
c
ti
v
e

($
)

200000

300000

400000

500000

600000

700000

800000

900000

 T
im

e
(m

s
)

(a) (b)

(c) (d)

Fig. 7. Experimental results about the nta heuristic. (a) M_1000_3, (b)

C_1000_3, (c) L_1000_3, and (d) S_1000_3.

TABLE V

PARAMETER AD SELECTION BETWEEN 4 AND 5

AD Mean B/W Mean B/W

 M_1000_1 C_1000_1

4 152.24 135.16

5 152.08 E 137.42 E

 L_1000_1 S_1000_1

4 825.57 560.22

5 816.93 W 563.68 E

‘B/W’ represents that the results of AD=4 are significantly better/worse than

AD=5 according a Wilcoxon rank sum test at level 0.05; ‘E’ represents that

they get equal performance.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

and 5, C_1000_1, L_1000_1, and S_1000_1 are also tested.

Each workflow is tested 20 times. Experimental results and

explanations are shown in Table V. The results show that for

M_1000_1, C_1000_1, and S_1000_1, setting AD to 4 or 5

does not have significant difference. However, for L_1000_1,

setting AD to 5 is clearly better than 4. Thus, for the sake of

universality, AD is set to 5 in the following experiments.

C. Investigation of the nta Heuristic

The dynamic heuristic nta along with the governor α are

designed to help A-ACO meeting the deadline constraint. Here

we are going to testify two questions, 1) whether this heuristic

is effective in meeting the deadline constraint when the

constraint is tight 2) and whether it will cause bad influence to

the objective value (total cost TC) when the deadline constraint

is easy to satisfy. An A-ACO without the nta heuristic is

designed as the control group, denoted as A-ACO-WN.

To answer the first question, the four xlarge workflows with

the most tight deadline constraint, M_1000_3, C_1000_3,

L_1000_3, and S_1000_3 are used as the test cases. Results

about the total execution time TT of these workflows are shown

in Fig. 7 in the form of box chart. The dotted lines in the figures

represent each instance’s deadline. Observing the Fig. 7, we

can find that basically the total time TT values achieved by

A-ACO are smaller than A-ACO-WN got. On the first two

instances, M_1000_3 and C_1000_3, A-ACO got feasible

solutions in all 20 times run and A-ACO-WN never got a

feasible solution. On L_1000_3, although both methods did not

find feasible solutions, Fig. 7(c) shows that the range of

A-ACO is still lower than the range of A-ACO-WN. The results

show that the constraint is too tight for L_1000_3. Although the

nta heuristic can help the algorithm meet the deadline, the main

functionality of A-ACO is still to cut off the total cost rather

than time. Thus when the deadline is too tight, A-ACO may still

fail in finding feasible solutions. For such case, HEFT is

recommended. On the last instance, A-ACO kept its good

performance that all solutions found were feasible. On the

contrary, only in a few runs, A-ACO-WN has found feasible

solutions. The consequence is that the nta heuristic is truly

useful in meeting tight deadline constraint.

 To answer the second question, the four large workflows

with the loosest deadline constraint, M_100_1, C_100_1,

L_100_1, and S_100_1 are used as the test cases on which both

A-ACO and A-ACO-WN can get feasible solutions. Results of

the total cost TC are shown in Table VI. Wilcoxon rank sum

test is made to show whether the results achieved by A-ACO

and A-ACO-WN have significant difference. If we set the level

to 0.05, according to Table VI, on M_100_1 and S_100_1,

TABLE VII

COMPARISON OF THE SUCCESS RATE AND TOTAL COST AMONG A-ACO, PSO, ACS, AND HEFT ON 48 TEST CASES

 Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W

workflow M_25_1 M_50_1 M_100_1 M_1000_1 C_30_1 C_50_1 C_100_1 C_1000_1

A-ACO 20 20 20 20 20 20 20 20

PSO 20 W 20 B 20 B 20 B 20 E 20 B 20 B 20 B

ACS 20 E 20 B 20 E 20 W 20 E 20 E 20 E 20 B

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B

workflow M_25_2 M_50_2 M_100_2 M_1000_2 C_30_2 C_50_2 C_100_2 C_1000_2

A-ACO 20 20 20 20 20 20 20 20

PSO 20 E 20 B 20 B 20 B 20 E 20 B 20 B 20 B

ACS 20 E 4 NA 0 NA 1 NA 20 E 20 E 20 E 20 B

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B

workflow M_25_3 M_50_3 M_100_3 M_1000_3 C_30_3 C_50_3 C_100_3 C_1000_3

A-ACO 20 20 20 20 20 20 20 20

PSO 20 B 20 B 20 B 20 B 20 B 20 B 20 B 12 NA

ACS 20 E 3 NA 0 NA 0 NA 20 E 20 E 20 E 0 NA

BASE(HEFT) 7 NA 19 NA 20 B 20 B 20 B 20 B 20 B 20 E

workflow L_30_1 L_50_1 L_100_1 L_1000_1 S_30_1 S_60_1 S_100_1 S_1000_1

A-ACO 20 20 20 20 20 20 20 20

PSO 20 W 20 B 20 B 0 NA 20 B 20 B 20 B 20 B

ACS 20 W 20 E 20 B 9 NA 20 E 20 E 20 E 20 B

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B

workflow L_30_2 L_50_2 L_100_2 L_1000_2 S_30_2 S_60_2 S_100_2 S_1000_2

A-ACO 20 20 20 14 20 20 20 20

PSO 20 W 20 W 19 NA 0 NA 20 B 20 B 20 B 20 B

ACS 20 W 20 W 19 NA 0 NA 20 E 20 E 20 B 20 B

BASE(HEFT) 20 B 20 B 20 B 20 NA 20 B 20 B 20 B 20 B

workflow L_30_3 L_50_3 L_100_3 L_1000_3 S_30_3 S_60_3 S_100_3 S_1000_3

A-ACO 20 20 20 0 20 20 20 20

PSO 20 W 20 W 12 NA 0 NA 20 B 20 B 20 B 20 B

ACS 20 W 20 W 15 NA 0 NA 20 E 20 E 20 E 20 B

BASE(HEFT) 20 B 20 B 20 E 20 NA 13 NA 16 NA 20 B 20 B

“NA” means “not available”. ‘B’ represents that the results of A-ACO are significantly better according to a Wilcoxon rank sum test at level 0.05; ‘W’ represents

that the results of A-ACO are significantly worse according to a Wilcoxon rank sum test at level 0.05; ‘E’ represents that A-ACO got equal performance with the

compared algorithm according to a Wilcoxon rank sum test at level 0.05. ‘Suc’ shows how many successful runs they got among total 20 runs.

TABLE VI

COMPARISON ON TC BETWEEN A-ACO AND A-ACO-WN

instance M_100_1 C_100_1

measure median Wilcoxon median Wilcoxon

A-ACO 15.0675
1.6E-1

14.875
4.96E-3

A-ACO-WN 15.645 14.4025

instance L_100_1 S_100_1

measure median Wilcoxon median Wilcoxon

A-ACO 54.88
4.499E-2

50.995
5.9656E-1

A-ACO-WN 53.0425 50.5925

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

A-ACO has similar performance with A-ACO-WN. On

C-100-1 and L-100-1, A-ACO is slightly worse than

A-ACO-WN. But the median values show that the gap between

them are small. The consequence tells us that when the deadline

constraint is relatively loose, the nta heuristic indeed has a little

bit bad influence to the objective on some workflows. But

considering its usage in handling the tight deadline constraint,

we think that its deeds outweigh its faults.

D. Comparison with Other Methods

The overall results of all four methods are shown in Table SI

in the supplemental material, including the number of runs in

which they got feasible solutions, the best objective value, the

mean value, whether A-ACO is better or worse than others

according to the Wilcoxon rank sum test. For the sake of

brevity and clarity, summerized information is shown in Table

VII, including the success rate and the results of Wilcoxon rank

sum test.

1) Comparison of the success rate

At first, we check the amount of the successful run of the

algorithms on each workflow to get a view of their abilities to

meet the deadline constraint. Observing Table VII, we can

obtain the following findings:

a) A-ACO gets 100% success rate on 46 workflows; PSO

gets 100% success rate on 42 workflows; ACS gets 100%

success rate on 36 workflows.

b) For the workflows with the most relaxed deadline

constraint, all four algorithms perform well, except for

one case L_1000_1 on which PSO and ACS do not find

feasible solutions in some runs.

c) Tightening the deadline constraint, we can find that the

performances of ACS and PSO start decreasing on some

workflows, such as M_1000_3, C_1000_3, L_1000_2,

and L_1000_3. Compared with these two approaches,

A-ACO is a little bit better where its success rate only

decreases on the xlarge LIGO workflows. HEFT fails on

some small instances like M_25_3 and S_30_3 rather than

large workflows since in a small workflow, the critical

path is more important to be scheduled right but the

paralleled tasks. Due to the static heuristic, HEFT will not

use expensive VMs for the tasks in critical path.

d) Overall, except on L_1000_2 and L_1000_3 where

A-ACO does not get a 100% success rate, on the rest

instances, A-ACO succeeds in every run. The

consequence shows that the A-ACO’s capability to

satisfying the deadline constraint is better than ACS and

PSO. Meanwhile it can also adapt to workflows with

different scales.

2) Comparison of the total cost TC

Due to the restriction of the deadline constraint, it is

meaningless to calculate the objective cost of the infeasible

solution. Thus, only feasible solutions are concerned when

dealing with the results about total cost. In the experiments, the

best objective value (best) and the mean value (mean) are used

as the standard of comparisons. Additionally, Wilcoxon rank

sum test is conducted between A-ACO and the compared

algorithms on the workflows where A-ACO makes 100%

success rate and the success rate of HEFT or PSO or ACS is

also 100%.

First, we get a general view of the results based on the

Wilcoxon rank sum test. The numbers about how many ‘B’,

‘W’, or ‘E’ A-ACO gets compared with the other three

algorithms are shown in Table VIII. It is clear that PSO and

HEFT are overwhelmed by A-ACO. ACS seems have similar

performance with A-ACO, but on many workflows, it just fails

in finding feasible solutions. Specific values about the objective

(total cost) can be found in the supplemental material in which

the numerical difference among the tested algorithms is shown.

Second, we analyze the results from the perspective of the

workflow type, and we focus on the results of the large and

xlarge workflows because their sizes are close to real

applications. For Montage workflows, A-ACO performs

significantly better on M_100_2, M_100_3, M_1000_2, and

M_1000_3. On M_100_1 and M_1000_1, ACS performs better.

Clearly, ACS degrades rapidly along with the growth of the

deadline constraint on Montage workflows. For CyberShake

workflows, A-ACO and ACS are well matched on the large

workflows and totally dominate the other two algorithms.

However, when the scale grows to xlarge, A-ACO becomes

better than ACS. Additionally, we can see that the total cost

obtained by A-ACO grows with the deadline constraint. Finally,

on C_1000_3, it gets comparable results with HEFT which

implies that the nta heuristic make A-ACO lease a lot of new

VMs for tasks. When it goes to the LIGO workflows, we can

see that the three metaheuristic algorithms get into trouble.

With the increase of both scale and deadline constraint, PSO

crashes at first, then ACS loses its functionality, finally on

L_1000_3, A-ACO also fails to find a feasible solution. But an

interesting thing is that HEFT performs very well on LIGO

workflows. Checking the structure of LIGO, we find that there

is a kind of task which occupy 98% of the execution time of the

whole workflow, and most of them are in the same layer which

means they can be executed in parallel. Thus the way to give

them each a new VM in HEFT is effective in meeting the

deadline constraint. Finally, SIPHT workflows show clear

preference to the A-ACO approach. All approaches have

achieved 100% success rate, and the Wilcoxon rank sum test

shows that A-ACO has made wonderful job on xlarge SIPHT

workflows. On S_100_1 and S_100_3, A-ACO and ACS tie for

first place. On S_100_2, A-ACO still dominates the other three

methods.

Overall, by checking the success rate and the total cost, we

can make the conclusion that A-ACO is both able to meet

different deadlines and effective to reduce the expenditure of

executing cloud workflows.

E. Algorithm Complexity Analysis

In this subsection, we make analysis about the time

TABLE VIII

QUANTIFICATION OF TABLE VII

 PSO ACS BASE

Better 33 8 40

Worse 6 6 0

Equal 3 21 2

NA 6 13 6

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

complexity of the four approaches. HEFT is a heuristic

approach whose execution time is much shorter than

metaheuristic algorithms. ACS, PSO, and A-ACO belong to the

iterative approach which really takes time to find a

near-optimal solution.

HEFT only generates one solution. If the time complexity of

assigning one task is O(1), the time complexity of HEFT is O(n)

where n the scale of the problem. In the problem studied in this

paper, n is the task number of workflows. The PSO method

used in [13] derives from the original PSO algorithm which is

used to solve the continuous space optimization problem. For

each dimension (task), the value (VM) is determined just by

constant times of addition and multiplication. Thus for a single

particle in one iteration, the time complexity to generate a

solution is O(n). Assuming the swarm size is m, the maximum

iteration number is k, then the time complexity of PSO is

O(n·m·k). The ACS method proposed in [29] derives from the

ACS algorithm which is proposed to solve the combinatorial

optimization algorithms. Its time complexity of generating a

single solution depends on the value range of each dimension.

Thus it considers every resource for each task’s assignment. As

shown by (5), the size of the resource pool is equal to the

product of the maximum number of tasks that can run in

parallel p and the number of VM types q. Thus for a single ant

in one iteration, the time complexity to generate a solution is

O(n·p·q). The whole complexity of ACS is O(n·p·q·m·k).

However, A-ACO modified the structure of the pheromone

matrix and the solution construction method to reduce the value

range of each dimension. More specifically, for the workflow

scheduling problem studied in this paper, the time complexity

of A-ACO is designed to depend on the size of the option set os

which is mentioned in Algorithm 2. The growing speed of os

size depends on the parameter AD. In the experiment we set AD

to 5. Usually for a large workflow, the maximum number of

tasks that can run in parallel p is about half of its task number,

/ 2p n , which means for a workflow with 1000 tasks, p is

approximately equal to 500. Considering 20 different VM

configurations, we size of the resource pool will be

20×500=10000. If the os size increases 5 every time (this is the

worst situation, generally the size will not always increase 5

after assigning a task), it can only grows to 5000 which is half

of the pool size. Thus, the time complexity of A-ACO is much

smaller than O(n·p·q·m·k/4).

 Theoretically speaking, the time complexity of A-ACO is

lower than ACS and is higher than PSO if m and k are

considered identical. However, when we apply a meta-heuristic

algorithm, besides the execution time of the algorithm itself,

most time expenditure actually comes from the fitness

evaluation, i.e. scheduling process. Following, the real run time

of the four methods on four xlarge workflows, M_1000_1,

C_1000_1, L_1000_1, and S_1000_1, using the computer with

Core i3-3240 3.40GHz processor are collected. However, the

execution time of HEFT is shorter than 100ms, which is too

smaller to be displayed. Thus only the result of the three

meta-heuristic methods are shown in Fig. 8. Comparing

A-ACO with PSO, we can find that except S_1000_1, on the

other three workflows, these two method take roughly the same

time. The PSO algorithm uses more fitness evaluations, that is

why the complexity of A-ACO is higher than PSO but they get

similar execution time. To find the reason why A-ACO gets

longer execution time on S_1000_1, we have counted how

many choices are considered to make a solution in each

generation. One ‘choice’ represents one available VM. The

results are show in Fig. 9. It is clear that on S_1000_1, A-ACO

faces more VM choices when constructing a solution, thus the

execution will be long. This phenomenon originates from the

characters of the tasks of S_1000_1. Their lower memory

bounds are relatively smaller than the other test cases which

does not exclude many VMs. Compared with ACS which

utilizes same number of times of fitness evaluation, due to the

novel solution construction method, the time consumption of

A-ACO is less than a tenth of the time consumption of ACS.

Thus, synthesizing all the experimental results, we can make

the conclusion that the A-ACO approach is effective and

efficient.

VI. CONCLUSION

In this paper, an intelligent cloud workflow scheduling

system is proposed from the users’ perspective to reduce the

expenditure of utilizing IaaS cloud service. The main

contributions are characterized in two aspects. First, models of

the applications and computing resources are improved. The

impact of main memory is taken into consideration which leads

to new estimation method of execution time. Such

Fig. 8. Comparison of the real run time on four workflows. The x-axis

represents the workflow name. The y-axis represent the execution time,

measured in milliseconds.

Fig. 9. Choice number to generate a solution on the four test cases of A-ACO.

The x-axis represents the iteration number. The y-axis represents the choice

number.

0 100 200 300 400 500

200000

300000

400000

500000

600000

700000

800000

900000

C
h

o
ic

e
 N

u
m

b
e

r

Iteration

 M_1000_1

 C_1000_1

 L_1000_1

 S_1000_1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

modifications make the model more practical so that the

scheduling can be more accurate. Second, a new adaptive ACO

variant named A-ACO is proposed in the scheduling module

and two useful heuristic factors are employed. An auxiliary

data structure, option set os, is used to decrease the search space

of the problem and the complexity of A-ACO. Experimental

results show that the method yields better results in both

success rate and total cost. Run time analysis also shows that

the proposed method is efficient.

In future research, more accurate computing models to

characterize the workflow applications and computing

resources are needed to improve the estimation module, which

will be helpful in estimating the execution time of the tasks,

thus facilitating the scheduling. Meanwhile, more efficient

scheduling approaches are still required in the scheduling

module to continue decreasing the execution time of the

optimization algorithms, since the time consumption is still

high on the large workflows. Also it will be useful to develop

online systems to solve workflow scheduling problems from

the perspective of suppliers, which will bring more

convenience to promote the utility of the public IaaS cloud.

REFERENCES

[1] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and

e-Science: An overview of workflow system features and

capabilities,” Future Gener. Comput. Syst., vol. 25, no. 5, pp. 528-540,

2009.
[2] W.N. Chen and J. Zhang, “An ant colony optimization approach to a grid

workflow scheduling problem with various QoS requirements,” IEEE

Trans. Syst., Man, Cybern. C Appl. Rev., vol. 39, no. 1, pp. 29-43, 2009.

[3] S. Abrishami, M. Naghibzadeh, and D. Epema, “Deadline-constrained

workflow scheduling algorithms for infrastructure as a service clouds,”

Future Gener. Comput. Syst., vol. 29, no. 1, pp. 158-169, 2013.

[4] A. Basu and A. Kumar, “Research commentary: Workflow management

issues in e-business,” Inf. Syst. Res., vol. 13, no. 1, pp. 1-14, 2002.

[5] G.B. Berriman, E. Deelman, et al., “Montage: a grid-enabled engine for

delivering custom science-grade mosaics on demand,” Astronomical

Telescopes and Instrumentation, International Society for Optics and

Photonics, pp. 221-232, 2004.

[6] I. Bertram, D. Evans, G.E. Graham, P. Love, R. Walker, “McRunjob: A

High Energy Physics Workflow Planner for Grid Production Processing,”

in Proc. UK e-Science All Hands Meeting, 2003.

[7] I.J. Taylor, E. Deelman, D.B. Gannon, and M. Shields, Workflows for

e-Science: scientific workflows for grids. Springer Publishing Company,

Incorporated, 2014.

[8] B. Ludäscher, I. Altintas, C. Berkley, et al., “Scientific workflow

management and the Kepler system,” Concurr. Comput. Pract. Exp., vol.

18, no. 10, pp. 1039-1065, 2006.

[9] M. Armbrust, A. Fox, et al., “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50-58, 2010.

[10] W. Wang, Y. Jiang, and W. Wu, “Multiagent-Based Resource Allocation

for Energy Minimization in Cloud Computing Systems,” IEEE Trans.

Syst. Man Cybern. Syst., vol. 47, no. 2, pp. 205-220, 2017.

[11] P. Mell, T. Grance, “The NIST definition of cloud computing,” Special

Publication 800-145, NIST, Gaithersburg, 2001.

[12] E. Sousa, F. Lins, E. Tavares, P. Cunha, and P. Maciel, “A modeling

approach for cloud infrastructure planning considering dependability and

cost requirements,” IEEE Trans. Syst. Man Cybern. Syst., vol. 45, no. 4,

pp. 549-558, 2015.

[13] M.A. Rodriguez, R. Buyya, “Deadline based Resource Provisioning and

Scheduling Algorithm for Scientific Workflows on Clouds,” IEEE Trans.

Cloud Comput., vol. 2, no. 2, pp. 222-235, 2014.

[14] S. Ostermann, A. Losup, et al., “A performance analysis of EC2 cloud

computing services for scientific computing,” Cloud Comput., pp.

115-131, 2009.

[15] Z.G. Chen, K.J. Du, Z.H. Zhan, and J. Zhang, “Deadline constrained

cloud computing resources scheduling for cost optimization based on

dynamic objective genetic algorithm,” in Proc. IEEE CEC, 2015, pp.

708-714.

[16] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-and

deadline-constrained provisioning for scientific workflow ensembles in

IaaS clouds,” in Proc. Int’l Conf. High Perform. Comput., Netw., Storage

Anal., 2012, vol. 22, pp. 1-11.

[17] S. Pandey, L. Wu, S.M. Guru, and R. Buyya, “A Particle Swarm

Optimization-based Heuristic for Scheduling Workflow Applications in

Cloud Computing Environments,” in Proc. IEEE int’l Conf. Adv. Inform.

Netw. Appl., 2010, pp. 400-407.

[18] M. Rahman, R. Hassan, R. Ranjan, R. Buyya, “Adaptive workflow

scheduling for dynamic grid and cloud computing environment,” Concurr.

Comput. Pract. Exp., vol. 25, no. 13, pp. 1816-1842, 2013

[19] S.J. Xue, W. Wu, “Scheduling workflow in cloud computing based on

hybrid particle swarm algorithm,” TELKOMNIKA Indonesian J. Electrial

Eng., vol. 10, no. 7, pp. 1560-1566, 2012.

[20] C. Lin, S. Lu, “Scheduling scientific workflows elastically for cloud

computing,” in Proc. IEEE int’l Conf. Cloud Comput., 2011, pp. 746-747.

[21] Z. Wu, Z. Ni, L. Gu, and X. Liu, “A revised discrete particle swarm

optimization for cloud workflow scheduling,” in Proc. int’l Conf. Comput.

Intell. Security, 2010, pp. 184-188.

[22] L.F. Bittencourt, E.R.M. Madeira, “HCOC: a cost optimization algorithm

for workflow scheduling in hybrid clouds,” J. Internet Services and Appl.,

vol. 2, no. 3, pp. 207-227, 2011.

[23] G.E. Suh, L. Rudolph, and S. Devadas, “Effects of memory performance

on parallel job scheduling,” Job Scheduling Strategies for Parallel

Process., 2001, pp. 116-132.

[24] E.S. Jung and R. Kettimuthu, “Challenges and Opportunities for

Data-intensive Computing in the Cloud,” Computer, vol. 47. no. 12, pp.

82-85, 2014.

[25] C.P. Chen, C. Y. Zhang, “Data-intensive applications, challenges,

techniques and technologies: A survey on Big Data,” Inform. Sciences,

vol, 275, pp. 314-347, 2014.

[26] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and meet

application deadlines in cloud workflows,” in Proc. Int’l Conf. High

Perform. Comput., Netw., Storage and Anal., 2011, pp. 1-12.

[27] Y.J. Gong, J.J. Li, Y.C Zhou, Y. Li, H.S.H. Chung, Y.H. Shi, and J.

Zhang, “Genetic Learning Particle Swarm Optimization,” IEEE Trans.

Cybern., vol. 46, no. 10, pp. 2277-2290, 2016.

[28] M. Dorigo, L.M. Gambardella, “Ant colony system: a cooperative

learning approach to the traveling salesman problem,” IEEE Trans. Evol.

Comput., vol. 1, no. 1, pp. 53-66, 1997.

[29] Z.G. Chen, Z.H. Zhan, H.H. Li, K.J. Du, J.H. Zhong, Y.W. Foo, Y. Li, J.

Zhang, “Deadline Constrained Cloud Computing Resources Scheduling

Through An Ant Colony System Approach,” in Proc. IEEE ICCCRI,

2015, pp. 112-119.

[30] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE

Comput. Intell. Mag., vol. 1, no. 4, pp. 28-39, 2006.

[31] D. Merkle, M. Middendorf, H. Schmeck, “Ant colony optimization for

resource-constrained project scheduling,” IEEE Trans. Evol. Comput.,

vol. 6, no. 4, pp. 333-346, 2002.

[32] L.N. Xing, P. Rohlfshagen, Y.W. Chen, and X. Yao, “A hybrid ant colony

optimization algorithm for the extended capacitated arc routing problem,”

IEEE Trans Syst. Man Cybern. B Cybern., vol. 41, no. 4, pp. 1110-1123,

2011.

[33] W.N. Chen and J. Zhang, “Ant Colony Optimization for Software Project

Scheduling and Staffing with an Event-Based Scheduler,” IEEE Trans.

Softw. Eng., vol. 39, no. 1, pp. 1-17, 2013.

[34] K.M. Sim and W.H. Sun, “Ant colony optimization for routing and

load-balancing: survey and new directions,” IEEE Trans. Syst. Man

Cybern. A Syst. Humans, vol. 33, no. 5, pp. 560-572, 2003.

[35] Z. Cai, Y. Wang, “A multiobjective optimization-based evolutionary

algorithm for constrained optimization,” IEEE Trans. Evol. Comput., vol.

10, no. 6, pp. 658-675, 2006.

[36] H. Topcuoglu, S. Hariri, and M.Y. Wu, “Task scheduling algorithms for

heterogeneous processors,” in Proc. IEEE 8th Heterogeneous Computing

Workshop, 1999, pp. 3-14.

[37] M. Maheswaran, S. Ali, H.J. Siegal, D. Hensgen, and R.F. Freund,

“Dynamic matching and scheduling of a class of independent tasks onto

heterogeneous computing systems,” in Proc. IEEE 8th Heterogeneous

Computing Workshop, 1999, pp. 30-44.

[38] C.K. Chang, H. Jiang, Y. Di, D. Zhu, and Y. Ge, “Time-Line Based

Model for Software Project Scheduling with Genetic Algorithms,” Inf.

and Softw. Technol., vol. 50, pp. 1142-1154, 2008.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

[39] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Algorithms for

cost-and deadline-constrained provisioning for scientific workflow

ensembles in iaas clouds,” Future Gener. Comput. Syst., vol. 48, pp. 1-18,

2015.

[40] A. Silberschatz, P.B. Galvin, and G. Gagne, Operating system concepts.

Wiley, 2013.

[41] J. Schad, J. Dittrich, and J.A. Quiané-Ruiz, “Runtime measurements in

the cloud: observing, analyzing, and reducing variance,” in Proc. VLDB

Endowment, vol. 3, no. 1/2, pp. 460-471, 2010.

[42] E. Walker, “Benchmarking Amazon EC2 for high-performance scientific

computing,” USENIX login, vol. 33, no. 5, pp. 18-23, 2008.

[43] A. Batat and D.G. Feitelson, “Gang Scheduling with Memory

Considerations,” in Proc. 14th IEEE int’l Parallel. and Distrib. Process.

Symposium, 2000, pp. 109-114.

[44] M. Iverson, F. Özgüner, and G.J. Follen, “Run-time statistical estimation

of task execution time for heterogeneous distributed computing,” in Proc.

5th IEEE int’l High Perform. Distrib. Comput. Symposium, 1996, pp.

263-270.

[45] S. Krishnaswamy and S.W. Loke, “Estimating computation times of

data-intensive applications,” IEEE Distrib. Syst. Online, vol. 5, no. 4,

2004.

[46] M.K. Qureshi, V. Srinivasan, and J.A. Rivers, “Scalable high

performance main memory system using phase-change memory

technology,” ACM SIGARCH Computer Architecture News, vol. 37, no. 3,

pp. 24-33, 2009.

[47] Amazon EC2 Instance Types. Available:

https://aws.amazon.com/ec2/instance-types/?nc1=h_ls

[48] K. Deb, “An efficient constraint handling method for genetic algorithms,”

Comput. Methods Appl. Mech. Eng., vol. 186, nos. 2-4, pp. 311-338,

2000.

[49] M. Dorigo and G. Di Caro, “Ant colony optimization: a new

meta-heuristic,” in Proc. CEC, 1999, pp. 1470-1477.

[50] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant System: Optimization by a

colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B

Cybern., vol. 26, no. 1, pp. 29–41, 1996.

[51] T. Stützle and H.H. Hoos, “MAX–MIN ant system,” Future Gener.

Comput. Syst., vol. 16, no. 8, pp. 889-914, 2000.

[52] G. Juve, A. Chervenak, et al., “Characterizing and profiling scientific

workflows,” Future Gener. Comput. Syst., vol. 29, no. 3, pp. 682-692,

2013.

[53] R.N. Calheiros, R. Ranjan, et al., “CloudSim: a toolkit for modeling and

simulation of cloud computing environments and evaluation of resource

provisioning algorithms,” Softw.: Practice Experience, vol. 41, no. 1, pp.

23-50. 2011.

Ya-Hui Jia (S’14) received his Bachelor’s degree from

Sun Yat-sen University, China, in 2013, where he is

currently pursuing his Ph. D. degree. He is also a research

assistant with Scholl of Computer Science and Engineering,

South China University of Technology, China. His current

research interests include evolutionary computation

algorithms and their applications on software engineering,

cloud computing, and intelligent transportation.

Wei-Neng Chen (S’07-M’12) received the Bachelor’s

degree and the Ph.D. degree from Sun Yat-sen University,

China, in 2006 and 2012, respectively. He is currently a

professor with the School of Computer Science and

Engineering, South China University of Technology, China.

His current research interests include swarm intelligence

algorithms and their applications on cloud computing,

operations research and software engineering. Dr. Chen has

published 50 papers in international journals and

conferences. His doctoral thesis received the IEEE Computational Intelligence

Society (CIS) Outstanding Dissertation Award in 2016. He also received

Natural Science Foundation for Distinguished Young Scientists of Guangdong

Province, China in 2015, the “Guangdong Special Support Program” for

Outstanding Young Scientists in 2015, and the Pearl River New Star in Science

and Technology in 2014.

Hua-Qiang Yuan received the Ph.D. degree from Shanghai

Jiao Tong University, China in 1996. He is currently a

professor with the School of Computer Science and

Network Security, Dongguan University of Technology,

China. His current research interests include computational

intelligence, cyberspace security

Tianlong Gu received the M.Eng. degree from Xidian

University, China, in 1987, and the Ph.D. degree from

Zhejiang University, China, in 1996. From 1998 to 2002, he

was a Research Fellow with the School of Electrical and

Computer Engineering, Curtin University of Technology,

Australia, and a Post-Doctoral Fellow with the School of

Engineering, Murdoch University, Australia. He is currently

a Professor with the School of Computer Science and

Engineering, Guilin University of Electronic Technology,

China. His research interests include formal methods, data and knowledge

engineering, software engineering, and information security protocol.

Huaxiang Zhang is currently a professor with the School

of Information Science and Engineering, Shandong Normal

University, China. He received his Ph.D. from Shanghai

Jiaotong University in 2004, and worked as an associated

professor with the Department of Computer Science,

Shandong Normal University from 2004 to 2005. He has

authored over 100 journal and conference papers and has

been granted 8 invention patents. His current research

interests include machine learning, pattern recognition,

evolutionary computation, web information processing, etc.

Ying Gao received the Bachelor’s degree, Master’s degree

from Central South University of China and the Ph.D.

degree from South China University of Technology, China,

in 1997, 2000 and 2006, respectively. She is currently a

professor with the School of Computer Science and

Engineering, South China University of Technology, China.

Her current research interests include Service-oriented

computing technology, software architecture, and network

security. Dr. Gao has published more than 30 papers in international journals

and conferences.

Jun Zhang (M’02-SM’08-F’17) received the Ph.D. degree

in Electrical Engineering from the City University of Hong

Kong in 2002. From 2004 to 2016, he was a professor with

SUN Yat-sen University. Since 2016, he has been with

South China University of Technology, Guangzhou, China,

where he is currently a Cheung Kong Chair Professor. He

has authored seven research books and book chapters, and

over 100 technical papers in his research areas. He is Fellow

of Institute of Electrical and Electronics Engineers (IEEE).

His current research interests include computational intelligence, cloud

computing, big data, high performance computing, data mining, wireless sensor

networks, operations research, and power electronic circuits.

Professor Zhang was a recipient of the China National Funds for

Distinguished Young Scientists from the National Natural Science Foundation

of China in 2011 and the First-Grade Award in Natural Science Research from

the Ministry of Education, China, in 2009. He is currently an Associate Editor

of the IEEE Transactions on Evolutionary Computation, the IEEE Transactions

on Industrial Electronics, and the IEEE Transactions on Cybernetics. He is the

Founding and Current Chair of the IEEE Guangzhou Subsection and IEEE

Beijing (Guangzhou) Section Computational Intelligence Society Chapters. He

is the Founding and Current Chair of the ACM Guangzhou Chapter.

