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Abstract—The introduction of workflow in cloud computing 

has afforded a new and efficient way to tackle large-scale 

applications. As an NP-hard problem, how to schedule cloud 

workflows effectively and economically with deadline constraints 

and different kinds of tasks and resources is extraordinarily 

challenging. To solve this constrained problem, this paper intends 

to develop an intelligent scheduling system from the perspective of 

users to reduce expenditure of workflow, subject to the deadline 

and other execution constraints. A new estimation model of the 

task execution time is designed according to virtual machine (VM) 

settings in real public clouds and execution data from practical 

workflows. Based on the new model, an adaptive ant colony 

optimization algorithm is proposed to meet the quality of service 

and orchestrate tasks. The adaptiveness of the algorithm is 

embodied in two aspects. First, an adaptive solution construction 

method is designed that each solution is built with a dynamically 

changing resource pool, thus the search space of the algorithm is 

narrowed down and the execution time is decreased. Second, two 

heuristics with self-adaptive weight are introduced to adaptively 

meet different deadline settings. Simulating results on four types 

of workflows show that the proposed approach is effective and 

competitive. 

 
Index Terms—Ant colony optimization, cloud computing, 

workflow scheduling. 

 

I. INTRODUCTION 

orkflow technology has been widely used to manage 

large computing applications [1]. In scientific 

computation environments, a workflow is defined as a 

collection of atomic tasks interconnected via data or computing 

dependencies [2], [3]. In recent decades, workflows have been 
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applied in many fields, such as e-commerce, bioinformatics, 

astronomy, and physics [4]-[6]. Generally, tasks in the 

workflow consist of compute-intensive and data-intensive 

activities which should be executed in an acceptable time. To 

satisfy the quality of service (QoS), large-scale workflows are 

usually deployed and executed in distributed high-performance 

computing environments. How to orchestrate these tasks has 

been a hot topic studied for a long time [7], [8]. 

The appearance of the public Infrastructure as a Service 

(IaaS) clouds offers us a new utility-based platform to execute 

large scale workflows [9]-[12]. In the public IaaS model, the 

fundamental computing resource provided to consumers is in 

the form of virtual machines (VMs) which shields the 

underlying hardware information. Consumers can lease any 

number of VMs on demand and pay for what they use on the 

pay-as-you-go basis. In this way, the public IaaS cloud has 

become a popular platform for the implementation of 

large-scale scientific and e-commercial workflows [13], [14]. 

How to orchestrate workflows well is an important issue for 

the usage of IaaS clouds. Good orchestrations of cloud 

workflows can benefit service suppliers in energy saving and 

resources management. Meanwhile customers can also 

decrease the time and economic expenditure through 

appropriate workflow scheduling. In this paper, we consider the 

problem how to minimize the expenditure of executing a 

workflow on a public IaaS cloud under the deadline constraint 

from the users’ perspective. 

Hitherto, several researches have studied the problem in 

different scenarios. To reduce the expenditure, users must have 

an effective and economical schedule before submitting the 

workflow. Thus the real cloud computing model should be 

simulated and proper optimization methods should be used. 

From the perspective of the computing model, some studies 

directly assumed that the execution time of all tasks on all kinds 

of VMs is known in advance [15] which is unrealistic. A more 

realistic practice is to define the VM model by considering its 

computing capacity and price. However, either the VMs are 

thought to be homogeneous [16] or the capacity of a VM is 

represented only by the speed of central processing unit (CPU), 

so that the contribution of other infrastructures like memory is 

ignored [3], [13], [17]-[22]. Thus running a task on different 

VMs cost roughly the same, which is usually not the case in 

practice [23]-[25]. From the perspective of the scheduling 

algorithm, these proposed approaches can be roughly divided 

into two classes: heuristic and meta-heuristic. In the first 
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category, Mao and Humphrey [26] proposed a method called 

Scaling Consolidation Scheduling (SCS) which used some 

heuristic behaviors to cut down the cost step by step. Abrishami 

et al. [3] proposed two algorithms named IaaS Cloud Partial 

Critical Path (IC-PCP) and IaaS Cloud Partial Critical Path with 

Deadline Distribution (IC-PCPD2). Although these algorithms 

are effective under some specific conditions, they share a 

common weakness that when the workflow scale becomes 

larger, the performance degrades rapidly owing to the lack of 

adaptability to different deadline requirements. Thus, several 

meta-heuristic approaches are proposed. Both Pandey et al. [17] 

and Rodriguez et al. [13] applied the particle swarm 

optimization (PSO) algorithm [27] in their scheduling 

approaches. Compared with the heuristic approaches, 

experimental results show that PSO performs relatively better. 

However, as their PSO approaches lack a mechanism to 

incorporate problem-based heuristic information, the search 

process suffers from a slow convergence speed. Considering 

this problem, Chen et al. [15] proposed an approach by 

applying genetic algorithm (GA), named dynamic objective 

genetic algorithm (DOGA). Then, in order to further accelerate 

the search speed, they applied the ant colony system (ACS) 

algorithm [28] to solve this problem, and obtained better results 

[29]. As a fixed encoding scheme is applied by these 

approaches, they all suffer from the problem of redundant 

search space so that the convergence speed is slow. In addition, 

since no effective heuristic for meeting the deadline constraint 

is designed in these approaches, most of them struggle to find 

feasible solutions when the scale increases or the constraint 

tightens. 

Aiming at these problems, in this paper, we are going to 

propose an intelligent cloud workflow scheduling system 

which contains a more practical computing model and a more 

effective scheduling algorithm. The system is designed from 

the perspective of ordinary users. The position of the system is 

defined as a middleware between users and IaaS clouds. 

Compared with traditional scheduling systems, the proposed 

system makes the scheduling of cloud workflows more 

intelligent with respect to the following two aspects. First, 

speaking from the computing model, the computing capacity of 

VM is associated with both CPU and memory. 

Correspondingly, for tasks in the workflow, besides the size, 

each task’s memory demand is also considered, and the 

execution time of task is estimated according to both CPU and 

memory. Moreover, different from the works that assume the 

execution time of all tasks on all kinds of VMs being known in 

advance, the proposed system estimates the execution time 

based on historical data, and thus it requires less priori 

knowledge. Meanwhile a feedback procedure is designed in the 

system to make the execution time estimation more accurate. 

Second, an adaptive ant colony optimization (A-ACO) method 

is proposed and utilized in the system to tackle the cloud 

workflow scheduling problem. Enlightened by the foraging 

behavior of ants, Dorigo et al. [30] first proposed the ant colony 

optimization (ACO) algorithm to solve the traveling salesman 

problem (TSP). Later, they proposed an improved ACO variant 

called ACS [28], which has been successfully employed for 

various problems [31]-[34]. The proposed A-ACO is designed 

on the basis of ACS. But considering the large-scale and 

constrained characters of the problem, some novel techniques 

are also designed to make A-ACO more effective and efficient. 

Specifically, the novelty and adaptiveness of the proposed 

A-ACO scheduling method are shown in two aspects: 

1) By introducing an idea of dynamically changing search 

space, a new routing strategy and a new pheromone matrix 

are designed to restrict every move of each ant, so that the 

search space of A-ACO can be shrunk a lot. Thus A-ACO 

has the ability to adapt to workflows with different scales. 

2) Aiming at the only constraint of the problem, i.e. deadline 

constraint, we have designed an effective heuristic with a 

dynamic weight. The proposed heuristic can directly guide 

ants to find feasible solutions, and the dynamic weight is 

able to automatically control the time when the heuristic 

works according to the status of the colony. Although there 

have been some studies which handle the constraints by 

changing fitness functions or weights [35], the idea of the 

dynamic weight in this paper is unique by adjusting the 

parameters of the algorithm rather than the objective 

function. 

To demonstrate the proposed scheduling system, extensive 

experiments are conducted on four types of scientific 

workflows which consist of both data-intensive and 

compute-intensive tasks. Each type is tested in four different 

scales with three different deadline settings. Experimental 

results show the effectiveness and efficiency of the proposed 

approach. 

The rest of this paper is organized as follows: in Section II, 

the architecture of the proposed scheduling system is shown. 

Section III and Section IV illustrate two important modules, the 

estimation module and the scheduling module, respectively. 

Experimental results are shown in Section V and conclusions 

are finally drawn in Section VI. 

II. CLOUD WORKFLOW SCHEDULING SYSTEM 

Fig. 1 shows the architecture of the proposed cloud workflow 

scheduling system. We can see that the system consists of four 

modules: estimation module, scheduling module, reservation 

module, and execution module. 

To schedule a workflow onto an IaaS cloud, seven steps 

should be taken: 

1) At first the estimation module acquires the workflow 

specification and the QoS requirement from the user, and 

the VM specification from the cloud service provider. In 

line with the problem studied in this paper, the QoS here is 

defined as the deadline constraint. 

2) Based on the acquired information, the estimation module 

will estimate the execution time of each task on every 

kinds of VM. 

3) Then, taking the execution time matrix, the scheduling 

module will make a complete execution plan about how 

many VMs should be leased, when to lease and release 

them, and which task should be assigned onto which VM. 

The scheduling module consists of two components: 

optimization algorithm and simulation. The optimization 
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algorithm generates schedules and gives them to the 

simulation component to judge whether the schedules can 

satisfy the constraints and how good the schedules are. 

Then utilizing the simulation results, the optimization 

algorithm keeps finding better schedules until the stop 

criterion is met. Usually the stop criterion is defined as the 

maximum number of simulations or the execution time of 

the algorithm. As aforementioned, the main optimization 

algorithm is A-ACO. However, sometimes when the 

deadline constraint is very tight, A-ACO may be not 

capable to find feasible solutions. Under the 

circumstances, the Heterogeneous Earliest-Finish-Time 

(HEFT) [36] algorithm will be utilized to at least provide a 

feasible solution. If even HEFT cannot generate a feasible 

solution, the application will be rejected. 

4) After getting a near-optimal schedule, the scheduling 

module tells the reservation module the amount and the 

types of the required VMs, and gives the execution plan to 

the execution module. 

5) The reservation module then leases VMs from the service 

provider and prepares them ready.  

6) When the execution module is informed that the runtime 

environment is prepared, it starts sending commands to 

the cloud to execute the workflow, telling the cloud which 

VM should be started or power-off. 

7) During the execution, it collects the information about the 

real runtime of tasks and return such information to the 

estimation module as the feedback. If there is another 

similar workflow which is going to be executed, the 

feedback information can help in improving the precision 

of execution time estimation. After running the whole 

workflow, the execution module is also responsible for 

returning the final result to the user. 

Among these four modules, the former two, estimation 

module and scheduling module, are the core of the whole 

scheduling system, because they together decide whether an 

effective and economical schedule can be generated. The latter 

two, reservation module and execution model, are designed to 

interact with cloud providers, which are all about programming, 

and we do not focus on them in this paper. In following sections, 

the estimation module and the scheduling module will be 

described in detail. 

III. ESTIMATION MODULE 

Workflow scheduling on heterogeneous computing 

resources has been studied over the years [36], [37]. However, 

for the cloud workflow scheduling problem studied in this 

paper, new computing models are needed to characterize the 

workflow applications and the public IaaS clouds. Execution 

time estimation is conducted based on the computing model. 

The models about workflows and VMs are described in this 

section. Relative notations used in the model description are 

listed in Table I.  

A. Workflow Specification 

Workflow is represented by the task precedence graph (TPG) 

[33], [38], which is a directed acyclic graph (DAG) denoted as 

G(V, E). The set of vertices V = {v1, v2, …, vn} represent the n 

tasks in the workflow, and each edge eij = (vi, vj) in the edge set 

E means that task vi is a direct predecessor of task vj. In the case 

of scheduling workflows on clouds, every edge has a weight to 

represent the size of data which is transferred from the parent 

task to its descendant tasks. Additionally, each workflow has a 

deadline D defined by consumer as the constraint. A simple 

workflow is shown in Fig. 2. 

In a workflow, we assume that each task is atomic for 

specific responsibility which means it cannot be further divided 

or interrupted during execution. According to [39], most 

scientific workflows are data-intensive so that the memory may 

influence the execution greatly. It is common that different 

tasks require different sizes of memory. Generally, there are an 

upper bound and a lower bound of memory size associated with 

each task. If the provided memory is smaller than the lower 

bound, the task is not capable to run. When the given memory is 

within the two bounds, the execution of the task can be 

 
Fig. 2. A simple workflow with 8 tasks.  

 
Fig. 1. Architecture of the cloud workflow scheduling system.  
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accelerated with the growing memory until the given memory 

exceeds the upper bound. Such phenomenon is attributed to the 

fact that the growth of memory in this range can reduce the 

probability of page faults (hard faults), which does help in 

decreasing the tendency of memory swap [40]. Also different 

tasks have different degrees of parallelism and different 

speed-up ratios. Thus the attributes of task vi (i = 1, 2, …, n) are 

shown as follows: 

 tsi—The task size. In this paper, we assume that the size of 

each task in the workflow is prior knowledge and we 

directly use the execution time of running the task on a 

VM instance which have only one processor and 1 GB 

memory to represent the task size [3], [13], [26].  

 ubi—The upper bound of memory demand. 

 lbi—The lower bound of memory demand. 

 dpi—The max degree of parallelism of task vi. 

 sui—The speed-up of task vi. It is defined as how much 

speed-up ratio one processor could bring. If 3 processors 

could reduce the execution time of vi by half, the sui is 

calculated as 2/3. 

 dsi—The output data size of task vi. 

B. Virtual Machine Model 

Enlightened by the configurations of VMs in different public 

IaaS clouds like Amazon EC2 and Google Compute Engine, we 

denote each VM type VMj with the following attributes: 

 cnj—The computing capacity of virtual CPUs in VMj. 

 msj—The memory size of VMj. 

 upj—The unit price of VMj. 

In addition, as pointed out in [41], [42], the processing 

capacity of a VM usually degenerates more or less during the 

execution. Thus any VM instance, i.e. the computing resource, 

denoted as rk, has a performance degradation rate degk. For the 

sake of clarity, we use j

kr to represent that rk belongs to the VM 

type VMj. The degradation information is updated by the 

feedback procedure in the scheduling system. 

C. Execution Time Estimation 

When estimating the execution time of a task, the 

relationship between the execution time and the memory size is 

extremely hard to build accurately in practice, since the 

execution time of a task is related not only to the memory size 

and speed, but also to the memory pressure, locality, etc. [43]. 

Still, it is found that the miss rate of the main memory decreases 

when memory size grows [23]. Besides, usually the detailed 

hardware information is transparent to customers on a public 

IaaS cloud. Thus there is not a universal formula which can 

precisely characterize the relation among memory, CPU, and a 

task’s execution time on cloud. But the execution time of a task 

can be still calculated based on the statistical running 

information in real applications [44], [45]. 

If there is not historical information that can be referred or 

the real test for all tasks on all kinds of VMs causes too much 

extra expenditure, we here can use a simple model to estimate a 

task’s execution time based on the empirical study made by 

Qureshi et al. [46]. They found that for some data-intensive 

works like database task, an n-fold increase of memory size 

would bring roughly the same fold decrease of page faults. For 

some compute-intensive works, the number of page faults is 

independent of memory size. Thus in our model, an attribute pti, 

denoting the percentage of memory-related execution time out 

of the whole execution time, is utilized to divide a single task 

into two parts: memory-related part and CPU-related part. 

Separately, these two parts can be accelerated by increasing the 

memory size or CPU capacity. For the CPU-related part, we 

can use the attributes dpi and sui to make a rough estimation. 

However, for the memory-related part, the scale of memory 

size to execution time depends on task and hardware which 

needs to be measured practically [46], also such a practice is 

recommended by real cloud providers [47]. Thus a scale 

parameter between memory size and execution time, denoted as 

sc, is considered. Supposing that task vi is scheduled onto VM 

instance rk of type VMj, if the upper bound of memory demand 

ubi is larger than VMj’s memory size msj, the execution of vi is 

carried out based on msj; otherwise ubi is used during the 

execution. Overall the execution time of vi on rk is estimated by 

 
 

 
 ,

1
min ,

1 deg
min ,

i i
i i

i jj k

i k

j i i

ts pt
ts pt

sc ub ms
EXE

cn dp su

 
   

  
 
 
 
 

.(1) 

To prove the effect of memory size and give an example of the 

proposed estimation method, we have conducted an experiment 

which is shown in the supplemental material of this paper. 

Without loss of generality, other estimation methods of the task 

execution time can be also applied in the estimation module. 

TABLE I 

NOTATIONS USED IN MODEL DESCRIPTION AND PROBLEM DEFINITION 

Notation Meaning 

i, j, k index or counter 

G a workflow 

V set of vertices (tasks) 

E set of edges (data transfers) 

vi the i-th task in G 

eij the edge between vi and vj 

D deadline 

tsi task size of vi 

ubi upper bound of memory demand of task vi 

lbi lower bound of memory demand of task vi 

dpi max degree of parallelism of task vi 

sui speed-up of task vi 

dsi output data size of vi 

VMj the j-th virtual machine type 

cnj capacity of virtual processors of VMj 

msj memory size of VMj 

upj unit price of VMj 

rk the k-th virtual machine instance 

degk performance degradation of rk 

pti percentage of data processing time of vi 

sc scale of memory size to execution time 

EXEi estimated execution time of vi 

S a complete schedule 

R set of resources to lease 

M set of mapping relationships 

TC total cost 

TT total time 

LSTk lease start time of rk 

LETk lease end time of rk 

bt boot time to initialize a VM 

mi mapping tuple of vi 

STi start time of vi 

ETi end time of vi 
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 Moreover, the data transfer time among VMs is omitted in 

the estimation module. Because usually a workflow is executed 

on a single data center and nowadays, data centers are built on 

the shared storage architecture [39], providing object storage 

service in which they can transfer static data by changing file 

index directly without costing any time. If the data transfer 

process is necessary to be considered, the time can be 

calculated according to the models shown in [13], [15]. 

IV. SCHEDULING MODULE 

After receiving the estimated execution time of the tasks, the 

scheduling module will generate an effective and economical 

schedule. At first, the formal definitions of the objective and the 

constraints of the cloud workflow scheduling problem are 

given based on the aforementioned models. Then the schedule 

generation method is introduced. Finally, the specially 

designed A-ACO method is proposed in this section. 

A. Problem Definition 

In our system, the goal is to find such a schedule of a 

workflow, based on which the expenditure of executing the 

workflow on an IaaS cloud is minimized under the deadline 

constraint D. A complete schedule, represented as S = (R, M, 

TC, TT), consists of four parts: a set of resources to lease R, a 

set of mapping relationships between tasks and resources M, 

the total cost TC, and the total time TT. R = {r0, r1, …, rl-1} is the 

set of l VM instances, which will be used to execute tasks. It is 

worth noting that the size of R is less than or equal to the 

number of tasks, l<=n, as different tasks can be scheduled onto 

one VM instance. In addition, for each VM instance rk, two 

lease attributes are considered when it is used: 1) lease start 

time LSTk, and 2) lease end time LETk. The lease start time LSTk 

of a VM instance is the time when it first receives a task and the 

lease end time LETk is the time when it finishes the last task 

scheduled onto it. Additionally the boot time to initialize a VM, 

denoted as bt, should be also considered when calculating the 

lease start time since most providers begin charging once the 

VM is power-on. M = {m1, m2, …, mn} whose size is equal to 

the number of tasks n, is the mapping set with n tuples, 

maintaining allocation relationships between tasks V and 

resources R. Each tuple mi = (vi, rk, STi, ETi) indicates that task 

vi is arranged onto the resource rk, is expected to start executing 

at time STi, and is estimated to complete at time ETi.  

Comprehensively, the total cost TC and the total execution 

time TT of a workflow are calculated by: 
-1

0

l
k k

j

k

LET LST
TC up



 
  

 
 ,                       (2) 

1 2max{ , ,..., }nTT ET ET ET .                        (3) 

where is the unit time to lease a VM in IaaS, specified by 

service providers. Under the pay-as-you-go model, consumers 

pay for every unit time of the leased VM, even the unit time is 

partially utilized. 

Accordingly, the problem studied in this paper can be 

formally defined as follows: 

minimize  

subject to 

TC

TT D
                                        (4) 

where D is the deadline of the workflow. 

B. Encoding 

Though theoretically the amount of resources in an IaaS 

cloud is infinite, to define the search domain of the proposed 

approach, an upper limit of available resources is calculated as 

in [13] by multiplying the maximum number of tasks that can 

be executed in parallel with the number of available VM types: 

AR p q  ,                                  (5) 

where p is the maximum number of tasks that can run in parallel 

and q is the number of VM types. Under such a search domain 

setting, the maximum number of instances of each VM type is p, 

since there are at most p tasks running at the same time. Before 

scheduling, these available resources are indexed from 0 to 

|AR|-1. The instances which share a same VM type are ordered 

consecutively. Taking the workflow in Fig.2 as example, the 

maximum number of tasks that can be executed in parallel is 3: 

{t3, t4, t5} or {t3, t4, t7}. Suppose that there are 3 VM types VM0, 

VM1, and VM2, then for this workflow, 3·3=9 VM instances are 

available to lease. These 9 VM instances are ordered from 0 to 

8: {r0, r1, r2} belonging to VM0, {r3, r4, r5} belonging to VM1, 

and {r6, r7, r8} belonging to VM2. 

When meta-heuristic algorithms are employed to solve real 

problems, the basic prerequisite is to encode the problem 

properly. Observing the schedule S, we can find that the most 

important part in S is the mapping relationship M between tasks 

and computing resources, because the rest of S can be derived 

from M. This observation inspires us to encode the set M to 

represent the solution of the problem. In the algorithm, an 

integer array with n elements arr[1…n] is used to represent the 

mapping set M, the index i of which denotes task vi and the 

corresponding value arr[i] represents resource rarr[i] that vi is 

scheduled onto. A simple solution code is depicted in Fig. 3. In 

the example, the value of each element is within [0, 8] and the 

7th value of the array is 3, indicating that task v7 is scheduled 

onto resource r3. 

Although we get infinite resources in an IaaS cloud, the code 

scheme designed in this paper still allows the occurrence that 

some tasks wait for some occupied resources to release. 

Because under the pay-as-you-go basis, sometimes, different 

tasks using a same resource can make full use of the resource’s 

lease time, so that the total cost may decrease. 

C. Decoding 

After encoding the mapping set M, a decoder is designed to 

translate it into a complete schedule. The pseudo code of the 

decoder is depicted in Algorithm 1.   
Fig. 3. A simple hypothetical array and the explanation of the array. 

1 2 3 4 5 6 7 8

0 3 1 0 2 6 3 3

index

value

v1 v2 v3 v4 v5 v6 v7 v8

r0 r3 r1 r0 r2 r6 r3 r3

task

resource

code array

task-resource mapping
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To begin with, the set of resources R and the mapping set M 

are initialized empty and the total cost TC and the total time TT 

are set to 0 (Line 1). Then, the decoder deals with the tasks one 

by one in order (Line 2). Suppose that the decoder is arranging 

task vi. First, obtaining the index of the allocated resource for vi, 

we check whether resource rarr[i] is already leased. Two contrary 

cases are considered: 

1) If resource rarr[i] is already in R which means this resource 

has been used by some other tasks before, we do not need 

to lease it again (Line 3). Then we find all parents of task 

vi (Line 4). If vi has no parent, it starts running 

immediately once the allocated resource rarr[i] is free (Line 

5). Otherwise, it will wait until two conditions are 

satisfied: a) all its parents finish running; b) the resource 

rarr[i] is free (Line 6-9). The maximum end time of the 

parents is denoted as maxET. 

2) Otherwise, we should lease rarr[i] at first. In the decoder, it 

is accomplished by instantiating a new VM instance and 

adding it into R (Line 11-12). Note that the VM type of 

rarr[i] can be obtained through ⌊arr[i]/p⌋, because all the 

available resources are indexed in the order of VM type. 

Subsequently all parents of vi are found (Line 13). If no 

parent exists, vi begins to run when the corresponding VM 

instance rarr[i] boots up and the lease start time of rarr[i] is 

set to 0 (Line 14-15). Otherwise task vi starts when its all 

parent tasks finish and the lease start time of rarr[i] is STi-bt 

where STi is the start time of vi (Line 16-21). 

Once the start time of vi is determined, the execution time 

EXEi can be obtained according to (1) (Line 22). Then the end 

time of vi can be calculated by ETi=STi+EXEi. As for rarr[i], its 

lease end time is updated to the end time of task vi, LETarr[i]=ETi 

(Line 23-24).  

Finally when all values of the elements in a mapping tuple mi 

are obtained, we add mi into M (Line 25-26). All the above 

procedures continue until all tasks are scheduled. Then the total 

cost TC and the total time TT of the workflow under such 

arrangement are calculated according to (2) and (3) (Line 28). 

Eventually an integrated schedule S is generated (Line 29).  

D. Adaptive Ant Colony Optimization Approach 

As presented in (4), the problem studied in this paper is a 

constrained optimization problem. To deal with such a problem, 

a feasibility-based rule to pairwise compare individuals 

proposed by Deb [48] is incorporated into the A-ACO approach. 

Whenever two solutions compete with each other, three rules 

are applied to determine which one is better: 1) any feasible 

solution is better than any infeasible solution; 2) between two 

feasible solutions, the one with better objective function value 

is preferred; and 3) between two infeasible solutions, the one 

with smaller degree of constraint violation is better.  

1) Overview of the ACO Algorithm 

ACO was first developed by Dorigo et al. [30], [49]. The 

underlying idea of ACO is to simulate the routing method of 

ants. Generally an ACO algorithm is composed of two 

procedures:  

1. Solution Construction—During each iteration, a set of 

artificial ants construct solutions by selecting solution 

elements step by step in a finite set of available solution 

elements, guided by a stochastic mechanism. Components 

with more pheromone are more attractive to ants. 

2. Pheromone Updating—The pheromone update procedure 

is used to increase the pheromone values associated with 

good solutions, and to decrease those with poor ones.  

Through introducing different pheromone management 

methods, various ACO variants have been developed [30], such 

as ant system (AS) [50], ant colony system (ACS) [28], 

max-min ant system (MMAS) [51], etc. In this paper, the 

proposed A-ACO is developed based on ACS.  

Two hallmarks show the differences between ACS and other 

ACO algorithms: 1) the pseudo random proportional rule 

applied in the solution construction procedure. Under this state 

transition rule, the artificial ants, with a certain probability, will 

directly choose the solution components associated with the 

maximum product of pheromone and heuristic values, rather 

than playing the roulette wheel selection strategy. 

Consequently, ACS takes full advantage of the past search 

experience of ants and obtains a fast convergence speed; 2) two 

pheromone updating rules, namely global updating and local 

updating. The former one only allows the global best ant to 

Algorithm 1. Decoder 

Input: workflow G; VM types VM; code array arr[n]; 

           maximum parallel tasks number p; 

Output: A schedule S; 

Starts 

01 Initialization: R=∅, M=∅, TT=0, TC=0; 

02 for i = 1 to n 

03     if R contains rarr[i] then 

04         Get all parents of vi, denoted as pari; 

05         if pari == ∅ then STi = LETarr[i]; 

06         else 

07             maxET = max{ETk | vk∈pari}; 

08             STi = max(LETarr[i], maxET); 

09         end if-else 

10     else 

11         Instantiate rarr[i] with type VMarr[i]/p; 

12         R = R ∪ {rarr[i]}; 

13         Get all parents of vi, denoted as pari; 

14         if pari == ∅ then 

15             STi = bt; LSTarr[i] = 0; 

16         else 

17             maxET = max{ETk | vk∈pari}; 

18             STi = maxET; 

19             LSTarr[i] = STi – bt; 

20         end if-else 

21     end if-else 

22     calculate EXEi according to (1); 

23     ETi = STi + EXEi; 

24     LETarr[i] = ETi; 

25     mi = (vi, rarr[i], STi, ETi); 

26     M = M ∪ {mi}; 

27 end for 

28 calculate TC and TT according to (2) and (3); 

29 S = (R, M, TC, TT); 

Ends 
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deposit pheromone, which is beneficial for fully mining the 

neighborhood of the global best solution. On the contrary, local 

updating rule is used to shuffle the tours. Every ant decreases 

the pheromone values in its tour instead of depositing 

pheromones in order to make the edges traveled in current 

iteration less desirable in the next iteration. In this way, the 

diversity of the search is kept. 

These two advantages of ACS give rise to its usage in the 

following proposed A-ACO in this paper.  

2) Adaptive Ant Colony Optimization (A-ACO) 

The overall flowchart of the proposed A-ACO is shown in 

Fig. 4. There are five main components: initialization, solution 

construction, fitness and constraint violation evaluation, local 

pheromone updating, and global pheromone updating. 

Following, these five components are introduced in detail.  

a) Initialization 

In the initialization phase, the pheromone matrix is 

initialized and the heuristic information is calculated in order to 

make preparation for the solution construction process.  

Pheromone. Assume there are n tasks in the workflow and 

the maximum number of available resources is |AR|. Then we 

can maintain a n×|AR| pheromone matrix PH with element 

( , )i k denoting the pheromone value of arranging tasks vi onto 

resource rk. 

In the ACS algorithm, the initial pheromone value 0 is 

problem-dependent. In our work, it is set as 

0

1.0 heft

heft

TT

TC n D
  


,                            (6) 

where TCheft is the total cost and TTheft is the total execution time, 

both produced by the Heterogeneous Earliest-Finish-Time 

(HEFT) algorithm [36] which arranges every task onto its most 

“suitable” resource; D is the predefined deadline. The concept 

“suitable” is defined by the following heuristic. 

Heuristic. When ants select VMs for tasks, not only the 

pheromone contributes, but also the associated heuristics 

should make difference. In this paper, to accelerate the 

convergence speed of A-ACO, two kinds of heuristic, which 

are designed to directly cater to the objective in (6), i.e. TC and 

TT, are applied in the solution construction process. 

The first one is the cost heuristic, which describes the cost of 

running task vi on VMs with type VMj, denoted as costi,j. Since 

our objective is to minimize the expenditure, a relatively 

smaller value of costi,j implies that the resources with the type 

VMj are more suitable for task vi than others. It should be noted 

that in the initialization process, we have not leased any VM 

instance yet. Thus we can only measure whether a VM type, 

rather than a specific VM instance, is suitable for a task. The 

costi,j  is estimated by 

 
 

 
,

1
min ,

min ,

i i
i i

i j

i j j

j i i

ts pt
ts pt

sc ub ms
cost up

cn dp su

 
   

  
 
 
 
 

.    (7) 

The second heuristic information applied in the approach is a 

dynamic value calculated during the solution construction. In 

an IaaS cloud with enough computing resources, if a schedule 

cannot fulfill the deadline constraint, it is highly likely that 

many tasks are assigned onto a same VM instance. Thus, the 

second heuristic information is designed based on the number 

of tasks that has been assigned to a VM, denoted as ntak. During 

the solution construction, if there are already nk tasks assigned 

to rk, then ntak is calculated by 

k

k

n n
nta

n


                                         (8) 

where n is the total number of all tasks. 

Combined the two aforementioned heuristics together, the 

heuristic for task vi choosing resource rk with type VMj (denoted 

as ( , )i k ) is given by 

 

 ,

( , )
k

i j

nta
i k

cost




  ,                                 (9) 

where α, called the governor, is used to sense the stage of the 

algorithm and correspondingly adjust the weight of the nta 

heuristic. It is associated with the number of infeasible 

solutions. For example, suppose there are 100 ants in the colony. 

At the i-th iteration, 25 ants build feasible solutions and 75 ants 

build infeasible solutions. Then at the (i+1)-th iteration, α=75. 

Through the governor, the algorithm can adjust its preferences 

to different resources adaptively. 

If the deadline constraint is loose, most of the ants will be 

able to construct feasible solutions. In such situation, we do not 

need to lease too much VMs and the governor α will be always 

close or equal to 0, making the nta heuristic contribute little to 

the selection. If the deadline constraint is tight, most solutions 

found will be infeasible at the early stage of the algorithm. At 

this point, we want the algorithm to find feasible solutions 

rather than optimizing the total cost. Meanwhile, α is close to 

 
Fig. 4.  Flowchart of the proposed A-ACO. 
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the colony size, making the nta heuristic play a key role in the 

resource selection. Attracted by it, the artificial ants tend to 

choose new resources at this stage rather than use the already 

leased VMs. At the later stage of the algorithm, when feasible 

solutions are found, α decreases and the nta heuristic gives way 

to the cost heuristic. Then, the algorithm truly begins to 

optimize the objective rather than find feasible solutions. 

Overall, combining the feasibility-based rule and the dynamic 

weight of nta, A-ACO is able to not only change objectives 

during the optimization process but also change the 

corresponding heuristics adaptively. 

b) Solution Construction 

In the A-ACO algorithm, we have designed a novel solution 

construction method to shrink the search space of the problem 

thus decreasing the time complexity of the algorithm. It is 

shown in Algorithm 2. This construction method is designed 

based on two facts: a) when we arrange a task, unleased 

resources with the same VM type are actually identical; b) once 

a resource is leased to run a task, it differs from other resources 

as it owns a unique computing ability degradation (deg) and 

lease start/end time (LST/LET). Thus it is unnecessary to 

consider every available resource in AR for every single task. 

To better understand the solution construction process, the 

example shown in Fig. 5(a), which corresponds to Fig. 3, is 

taken as an explanation: originally, there are 9 instances in AR. 

At first, three VM instances r0, r3, r6 whose indexes are 

minimum in their type are put into the option set os (Step b). 

According to the first fact, {r1, r2, r4, r5, r7, r8} will not be 

considered. Then A-ACO selects one resource for task v1 

according to the pseudo random proportional rule [28] (Step 

c1-c3). Suppose resource r0 is selected (Step c4). According to 

the second fact, now r0 is different from r1 and r2. Then, we add 

the next several VMs into the option set (Step c5). The number 

of the added VMs is an important parameter of A-ACO, which 

is denoted as AD. In the example, AD is set to 1, thus r1 is added. 

Next, A-ACO selects resources for the other tasks one by one. 

After allocating task v4, we can find that r1 is already in os, so 

we keep os unchanged. When all tasks are allocated, one 

solution arr is generated. What calls for special attention is that 

all selection behaviors are taken under the lower memory 

bound constraint that a task cannot be assigned to a VM which 

has smaller memory size than the task demands.  

Since the optional components in each step are limited in the 

option set os whose size is always smaller than or equal to |AR|, 

the search space of the A-ACO is always smaller than n|AR|. To 

compare the search spaces of A-ACO and the traditional ACO 

method, the construction method of traditional ACO is shown 

in Fig. 5(b). The parameter AD is set to accommodate the ACS 

algorithm, and we will investigate this parameter sufficiently in 

the experiment section.  

c) Fitness and Constraint Violation Evaluation 

In this scheduling problem, the total cost TC is considered as 

the fitness of a solution and whether a solution violates the 

deadline constraint is determined according to the total time TT. 

If the total time TT is less than or equal to the pre-defined 

deadline D, the corresponding solution is feasible. Otherwise 

the solution is infeasible. Between two infeasible solutions, the 

one with smaller TT is better than the other. 

d) Pheromone Updating 

Whenever an ant builds a solution, the algorithm updates 

pheromone values according to the local updating rule. After all 

ants finish their solution constructions, pheromones are further 

updated according to the global updating rule. These two rules 

share a same updating formula symbolically which is  

( , ) (1 ) ( , ) ( , )i k i k i k         .              (11) 

The difference between these two rules is the value of Δφ(i, k).  

Global Updating. In the global updating rule, Δφ(i, k)is 

calculated by 

Algorithm 2. Solution Construction 

Input: pheromone matrix PH; heuristics η(i, k); 

available resources AR 

Output: an array code arr[n]; 

Auxiliary Storage: option set, denoted as os; 

step a: os = ∅, arr[n] = ∅; 

step b: Initialize os by including the first instance of each 

VM type; 

step c: for i = 1 to n 

    step c1: randomly generate a number 0<X<1 and 

compare X with a threshold value X0; 

    step c2: if X<X0, the resource rk from the os with the 

largest value of  φ(i, k)·η(i, k)is selected. 

step c3: Otherwise, the resource is chosen through 

roulette wheel strategy. The probability of choosing rk 

is calculated by 

( , ) ( , )
,    if ,

( , ) ( , )( , )

0                                 otherwise.

u

k

r os

i k i k
r os

i u i uP i k

 

 



  




     (10) 

step c4: arr[i] = k; 

    step c5: os=os∪{rk+1, rk+2,……, rk+AD}; 
 

 
(a) 

 
(b) 

Fig. 5. Solution construction methods. (a) A-ACO. (b) Traditional ACO. 
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1/ ,   if [ ]==
( , )

0,               otherwise

gbest gbestTC arr i k
i k


  



,             (12) 

where gbest is the global best solution found so far. 

Local Updating. In the local updating rule, Δφ(i, k) is 

calculated by 

0( , ) ,  [ ]==ki k arr i   ,                   (13) 

where φ0 is the initial pheromone value calculated by (6).  

Overall, through the collaboration of the adaptive nta 

heuristic and the pairwise comparison method [48], the 

proposed A-ACO gains a fast speed to enter the feasible zone of 

the search space. Meanwhile through the collaboration of the 

cost heuristic and the novel solution construction method, 

A-ACO is capable to select suitable resources for different 

tasks properly.  

V. EXPERIMENTAL STUDIES 

A. Experimental Settings 

To verify the feasibility and efficiency of the proposed model 

and A-ACO, four different types of workflows which have 

been widely applied in this domain are used in the experiments: 

Montage, CyberShake, LIGO, and SIPHT [52]. Montage was 

created by the NASA/IPAC Infrared Science Archive to 

generate custom mosaics of the sky. The CyberShake workflow 

is used to characterize earthquake hazards, in which most of 

tasks can be seen to be compute-intensive. The LIGO Inspiral 

Analysis is used to analyze the gravitational wave data 

produced by various events in the universe. The SIPHT is an 

application about bioinformatics which uses a workflow to 

automate the search process for sRNA encoding-genes for all 

bacterial replicons in a specific database. Details about these 

four kinds of workflows can be found in [52]. For each kind of 

workflow, four different scales are considered in the 

experiments. The number of tasks in each workflow is shown in 

Table II. 

As for the computing resources, all VM instances considered 

in this paper simulate from the Amazon EC2 on-demand 

instances. Three types of VMs are adopted: general-purpose, 

compute-optimized, and memory-optimized. Moreover, there 

are four or five configurations in each type. Since the 

processing capacity of each VM is not linearly proportional to 

the number of virtual CPUs in the Amazon EC2, we apply the 

ECU which is a unified measurement of processing capacity to 

represent the number of CPU. Details about VM configurations 

and prices are shown in Table III. Additionally, the unit time to 

lease a VM instance in the Amazon EC2 is 1 hour.  

In order to conduct the simulation, for each task, a 

percentage of memory-related execution time pt, an upper 

bound of memory demand ub and a lower bound of memory 

demand lb are generated according to their own properties as 

described in [52]. Before generating a specific number of pt, we 

classify the tasks into three categories: compute-intensive, 

general, and data-intensive. For these three kinds of tasks, pt is 

randomly generated within (0, 0.3], (0.3, 0.7], and (0.7, 1.0) 

respectively. Referring to the two bounds of memory demand, 

for small tasks, ub is randomly generated within [1.0, 7.5) and 

lb is set to 0; while for big tasks, ub is in the range of [7.5, 30) 

and lb is in the range of [1.0, 7.5). The range [30, 120) of ub is 

specially prepared for the extraordinarily large tasks, which 

require vast size of memory and their lb values are generated 

within [7.5, 30). It should be mentioned that all these random 

values follow the uniform distribution and are generated only 

once for all algorithms. For real applications, we recommend 

readers to check the peak memory usage, page fault rate, data 

throughput of tasks before deciding the aforementioned 

parameters based on the methods and measurements used in 

[14], [23], [52]. 

Additionally, the boot time of each VM instance in the 

experiments is set to 97 seconds [26]. The degradation of the 

processing capacity of a VM instance follows a normal 

distribution N(0.12, 0.10) with maximum value of 0.24 [42]. 

Moreover, to facilitate the experiments, the scale of memory 

size to execution time sc is set to 1. 

To verify the adaptability of the proposed approach to 

different deadline settings, three different deadlines are 

generated according to: 

 
3

( )
fastest

D fastest slowest fastest
t slowest


   

 
,        (14) 

where slowest is the execution time of the workflow obtained 

by mapping each task onto the cheapest VM while satisfying 

the lower bound of memory demand; fastest is the execution 

TABLE IV 

ALL WORKFLOWS TESTED IN THE EXPERIMENT 

Kind Name 

Montage 

M_25_1 M_50_1 M_100_1 M_1000_1 

M_25_2 M_50_2 M_100_2 M_1000_2 

M_25_3 M_50_3 M_100_3 M_1000_3 

CyberShake 

C_30_1 C_50_1 C_100_1 C_1000_1 

C_30_2 C_50_2 C_100_2 C_1000_2 

C_30_3 C_50_3 C_100_3 C_1000_3 

LIGO 

L_30_1 L_50_1 L_100_1 L_1000_1 

L_30_2 L_50_2 L_100_2 L_1000_2 

L_30_3 L_50_3 L_100_3 L_1000_3 

SIPHT 

S_30_1 S_60_1 S_100_1 S_1000_1 

S_30_2 S_60_2 S_100_2 S_1000_2 

S_30_3 S_60_3 S_100_3 S_1000_3 

 

TABLE II 

NUMBER OF TASKS IN EACH WORKFLOW 

Name small medium large xlarge 

Montage 25 50 100 1000 

CyberShake 30 50 100 1000 

LIGO 30 50 100 1000 

SIPHT 30 60 100 1000 

 

TABLE III 

CONFIGURATIONS AND PRICES OF DIFFERENT VMS 

Type Name ECU Memory(GB) Price($/hour) 

General 

Purpose 

m3.medium 3 3.75 0.070 

m3.large 6.5 7.5 0.140 

m3.xlarge 13 15 0.280 

m3.2xlarge 26 30 0.560 

Compute 

Optimized 

c3.large 7 3.75 0.105 

c3.xlarge 14 7.5 0.210 

c3.2xlarge 28 15 0.420 

c3.4xlarge 55 30 0.840 

c3.8xlarge 108 60 1.680 

Memory 

Optimized 

r3.large 6.5 15 0.175 

r3.xlarge 13 30.5 0.350 

r3.2xlarge 26 61 0.700 

r3.4xlarge 52 122 1.400 
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time of the workflow obtained by allocating each task to a VM 

instance of the most expensive VM type. In addition, t is set 

to 1, 2, and 3 for the three deadlines, respectively. The larger t

is, the stricter the deadline is. What calls for special attention is 

that the period slowest–fastest is not trisected in (15), because 

for some workflows, the value of slowest is two orders of 

magnitude higher than the fastest. If the period slowest–fastest 

is trisected, even the strictest deadline: 

( ) / 3D fastest slowest fastest                     (15) 

is very easy for most approaches to reach. Thus in (14), the 

multiple relationship between the fastest and the slowest is 

considered to make a fair deadline setting. 

On the basis of the above description, a nomenclature 

“name_size_deadline” is used to identify each specific 

workflow. All workflows tested in the experiment are listed in 

Table IV, such as M_25_1 refers to the Montage workflow with 

total 25 tasks and the most relaxed deadline.  

To testify the efficiency of the proposed A-ACO, we 

compare it with two other representative meta-heuristic 

methods, i.e. the PSO method [13] and the ACS [29] method. 

The PSO method [13], [17] can be taken as the first 

evolutionary algorithm which is used to the problem studied in 

this paper, and it has outperformed some well-known heuristic 

methods according to their experimental results. The ACS 

method [29] was proposed recently which has achieved very 

good performance. To make these two approaches adapt to the 

situation described in this paper, the encoding and decoding 

schemes proposed in Section III are embedded into these 

algorithms. In addition, the HEFT algorithm is tested to make a 

baseline of the performance. Since the HEFT method tends to 

assign new VMs to tasks, in most cases it will get feasible 

solutions as tasks will never wait for an occupied VM. 

 For the parameters in A-ACO, we directly use the settings in 

canonical ACS [28], X0=0.9 and ρ=0.1. β is set to 5. The colony 

size is set to 10 and the number of generation is 500. With same 

colony size and generation number, other parameters of the 

compared ACS method are set according to [29]. As for PSO, 

its parameters are set as recommended in [13] with 100 

particles and 250 generations. Additionally, 20 independent 

runs for each algorithm on every workflow are conducted, 

based on the simulation tool CloudSim [53]. Besides, although 

HEFT is a deterministic algorithm, due to the randomness of 

the VM’s degradation on processing capacity, its results in 

different runs are also slightly different, especially for some 

large workflows.  

B. Investigation of the Parameter AD 

AD is an important parameter during the solution 

construction. If it is set to a small value, the search space will 

grow in a low speed, so that the execution time of A-ACO can 

be relatively short. But the performance will decrease, since the 

exploration ability of the algorithm is limited. Contrarily, if it is 

set to a big value, the search space will grow rapidly, the 

execution time of A-ACO will be long, and the performance 

will increase. Here we use an xlarge instance M_1000_1 to find 

how this parameter affects the execution time and the 

performance. Since the deadline constraint is loose, basically 

A-ACO can always get feasible solutions so that we can 

compare the objective value. 

AD is set to six values {1, 2, 3, 4, 5, 20}. Other settings are 

kept unchanged. Each configuration is tested 20 times to get the 

mean value. Experimental results are shown in Fig. 6. 

From the figure, we can see that the execution time increases 

linearly with the growth of AD. Regarding the objective value, 

we can find that it decreases rapidly at the beginning. However, 

when AD increases to 5, the objective value stops decreasing 

and holds on that level thereafter. Converted the measurement 

from millisecond into minute, the execution time of A-ACO 

with AD=5 is 6.935 minutes which is still within an acceptable 

range. However only judging by M_1000_1, AD=4 also seems 

to be a rational choice since the difference between 4 and 5 is 

negligible on Fig. 6. To select an appropriate value between 4 

 
Fig. 6.  Experimental results about parameter AD. 
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Fig. 7.  Experimental results about the nta heuristic. (a) M_1000_3, (b) 

C_1000_3, (c) L_1000_3, and (d) S_1000_3. 

  

TABLE V 

PARAMETER AD SELECTION BETWEEN 4 AND 5 

AD Mean B/W Mean B/W 

 M_1000_1 C_1000_1 

4 152.24  135.16  

5 152.08 E 137.42 E 

 L_1000_1 S_1000_1 

4 825.57  560.22  

5 816.93 W 563.68 E 

‘B/W’ represents that the results of AD=4 are significantly better/worse than 

AD=5 according a Wilcoxon rank sum test at level 0.05; ‘E’ represents that 

they get equal performance. 
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and 5, C_1000_1, L_1000_1, and S_1000_1 are also tested. 

Each workflow is tested 20 times. Experimental results and 

explanations are shown in Table V. The results show that for 

M_1000_1, C_1000_1, and S_1000_1, setting AD to 4 or 5 

does not have significant difference. However, for L_1000_1, 

setting AD to 5 is clearly better than 4. Thus, for the sake of 

universality, AD is set to 5 in the following experiments.  

C. Investigation of the nta Heuristic  

The dynamic heuristic nta along with the governor α are 

designed to help A-ACO meeting the deadline constraint. Here 

we are going to testify two questions, 1) whether this heuristic 

is effective in meeting the deadline constraint when the 

constraint is tight 2) and whether it will cause bad influence to 

the objective value (total cost TC) when the deadline constraint 

is easy to satisfy. An A-ACO without the nta heuristic is 

designed as the control group, denoted as A-ACO-WN.  

To answer the first question, the four xlarge workflows with 

the most tight deadline constraint, M_1000_3, C_1000_3, 

L_1000_3, and S_1000_3 are used as the test cases. Results 

about the total execution time TT of these workflows are shown 

in Fig. 7 in the form of box chart. The dotted lines in the figures 

represent each instance’s deadline. Observing the Fig. 7, we 

can find that basically the total time TT values achieved by 

A-ACO are smaller than A-ACO-WN got. On the first two 

instances, M_1000_3 and C_1000_3, A-ACO got feasible 

solutions in all 20 times run and A-ACO-WN never got a 

feasible solution. On L_1000_3, although both methods did not 

find feasible solutions, Fig. 7(c) shows that the range of 

A-ACO is still lower than the range of A-ACO-WN. The results 

show that the constraint is too tight for L_1000_3. Although the 

nta heuristic can help the algorithm meet the deadline, the main 

functionality of A-ACO is still to cut off the total cost rather 

than time. Thus when the deadline is too tight, A-ACO may still 

fail in finding feasible solutions. For such case, HEFT is 

recommended. On the last instance, A-ACO kept its good 

performance that all solutions found were feasible. On the 

contrary, only in a few runs, A-ACO-WN has found feasible 

solutions. The consequence is that the nta heuristic is truly 

useful in meeting tight deadline constraint.  

 To answer the second question, the four large workflows 

with the loosest deadline constraint, M_100_1, C_100_1, 

L_100_1, and S_100_1 are used as the test cases on which both 

A-ACO and A-ACO-WN can get feasible solutions. Results of 

the total cost TC are shown in Table VI. Wilcoxon rank sum 

test is made to show whether the results achieved by A-ACO 

and A-ACO-WN have significant difference. If we set the level 

to 0.05, according to Table VI, on M_100_1 and S_100_1, 

TABLE VII 

COMPARISON OF THE SUCCESS RATE AND TOTAL COST AMONG A-ACO, PSO, ACS, AND HEFT ON 48 TEST CASES 

 Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W Suc B/W 

workflow M_25_1 M_50_1 M_100_1 M_1000_1 C_30_1 C_50_1 C_100_1 C_1000_1 

A-ACO 20  20  20  20  20  20  20  20  

PSO 20 W 20 B 20 B 20 B 20 E 20 B 20 B 20 B 

ACS 20 E 20 B 20 E 20 W 20 E 20 E 20 E 20 B 

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B 

workflow M_25_2 M_50_2 M_100_2 M_1000_2 C_30_2 C_50_2 C_100_2 C_1000_2 

A-ACO 20  20  20  20  20  20  20  20  

PSO 20 E 20 B 20 B 20 B 20 E 20 B 20 B 20 B 

ACS 20 E 4 NA 0 NA 1 NA 20 E 20 E 20 E 20 B 

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B 

workflow M_25_3 M_50_3 M_100_3 M_1000_3 C_30_3 C_50_3 C_100_3 C_1000_3 

A-ACO 20  20  20  20  20  20  20  20  

PSO 20 B 20 B 20 B 20 B 20 B 20 B 20 B 12 NA 

ACS 20 E 3 NA 0 NA 0 NA 20 E 20 E 20 E 0 NA 

BASE(HEFT) 7 NA 19 NA 20 B 20 B 20 B 20 B 20 B 20 E 

workflow L_30_1 L_50_1 L_100_1 L_1000_1 S_30_1 S_60_1 S_100_1 S_1000_1 

A-ACO 20  20  20  20  20  20  20  20  

PSO 20 W 20 B 20 B 0 NA 20 B 20 B 20 B 20 B 

ACS 20 W 20 E 20 B 9 NA 20 E 20 E 20 E 20 B 

BASE(HEFT) 20 B 20 B 20 B 20 B 20 B 20 B 20 B 20 B 

workflow L_30_2 L_50_2 L_100_2 L_1000_2 S_30_2 S_60_2 S_100_2 S_1000_2 

A-ACO 20  20  20  14  20  20  20  20  

PSO 20 W 20 W 19 NA 0 NA 20 B 20 B 20 B 20 B 

ACS 20 W 20 W 19 NA 0 NA 20 E 20 E 20 B 20 B 

BASE(HEFT) 20 B 20 B 20 B 20 NA 20 B 20 B 20 B 20 B 

workflow L_30_3 L_50_3 L_100_3 L_1000_3 S_30_3 S_60_3 S_100_3 S_1000_3 

A-ACO 20  20  20  0  20  20  20  20  

PSO 20 W 20 W 12 NA 0 NA 20 B 20 B 20 B 20 B 

ACS 20 W 20 W 15 NA 0 NA 20 E 20 E 20 E 20 B 

BASE(HEFT) 20 B 20 B 20 E 20 NA 13 NA 16 NA 20 B 20 B 

“NA” means “not available”. ‘B’ represents that the results of A-ACO are significantly better according to a Wilcoxon rank sum test at level 0.05; ‘W’ represents 

that the results of A-ACO are significantly worse according to a Wilcoxon rank sum test at level 0.05; ‘E’ represents that A-ACO got equal performance with the 

compared algorithm according to a Wilcoxon rank sum test at level 0.05. ‘Suc’ shows how many successful runs they got among total 20 runs. 

TABLE VI 

COMPARISON ON TC BETWEEN A-ACO AND A-ACO-WN 

instance M_100_1 C_100_1 

measure median Wilcoxon median Wilcoxon 

A-ACO 15.0675 
1.6E-1 

14.875 
4.96E-3 

A-ACO-WN 15.645 14.4025 

instance L_100_1 S_100_1 

measure median Wilcoxon median Wilcoxon 

A-ACO 54.88 
4.499E-2 

50.995 
5.9656E-1 

A-ACO-WN 53.0425 50.5925 
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A-ACO has similar performance with A-ACO-WN. On 

C-100-1 and L-100-1, A-ACO is slightly worse than 

A-ACO-WN. But the median values show that the gap between 

them are small. The consequence tells us that when the deadline 

constraint is relatively loose, the nta heuristic indeed has a little 

bit bad influence to the objective on some workflows. But 

considering its usage in handling the tight deadline constraint, 

we think that its deeds outweigh its faults. 

D. Comparison with Other Methods 

The overall results of all four methods are shown in Table SI 

in the supplemental material, including the number of runs in 

which they got feasible solutions, the best objective value, the 

mean value, whether A-ACO is better or worse than others 

according to the Wilcoxon rank sum test. For the sake of 

brevity and clarity, summerized information is shown in Table 

VII, including the success rate and the results of Wilcoxon rank 

sum test. 

1) Comparison of the success rate 

At first, we check the amount of the successful run of the 

algorithms on each workflow to get a view of their abilities to 

meet the deadline constraint. Observing Table VII, we can 

obtain the following findings: 

a) A-ACO gets 100% success rate on 46 workflows; PSO 

gets 100% success rate on 42 workflows; ACS gets 100% 

success rate on 36 workflows. 

b) For the workflows with the most relaxed deadline 

constraint, all four algorithms perform well, except for 

one case L_1000_1 on which PSO and ACS do not find 

feasible solutions in some runs. 

c) Tightening the deadline constraint, we can find that the 

performances of ACS and PSO start decreasing on some 

workflows, such as M_1000_3, C_1000_3, L_1000_2, 

and L_1000_3. Compared with these two approaches, 

A-ACO is a little bit better where its success rate only 

decreases on the xlarge LIGO workflows. HEFT fails on 

some small instances like M_25_3 and S_30_3 rather than 

large workflows since in a small workflow, the critical 

path is more important to be scheduled right but the 

paralleled tasks. Due to the static heuristic, HEFT will not 

use expensive VMs for the tasks in critical path.  

d) Overall, except on L_1000_2 and L_1000_3 where 

A-ACO does not get a 100% success rate, on the rest 

instances, A-ACO succeeds in every run. The 

consequence shows that the A-ACO’s capability to 

satisfying the deadline constraint is better than ACS and 

PSO. Meanwhile it can also adapt to workflows with 

different scales. 

2) Comparison of the total cost TC 

Due to the restriction of the deadline constraint, it is 

meaningless to calculate the objective cost of the infeasible 

solution. Thus, only feasible solutions are concerned when 

dealing with the results about total cost. In the experiments, the 

best objective value (best) and the mean value (mean) are used 

as the standard of comparisons. Additionally, Wilcoxon rank 

sum test is conducted between A-ACO and the compared 

algorithms on the workflows where A-ACO makes 100% 

success rate and the success rate of HEFT or PSO or ACS is 

also 100%. 

First, we get a general view of the results based on the 

Wilcoxon rank sum test. The numbers about how many ‘B’, 

‘W’, or ‘E’ A-ACO gets compared with the other three 

algorithms are shown in Table VIII. It is clear that PSO and 

HEFT are overwhelmed by A-ACO. ACS seems have similar 

performance with A-ACO, but on many workflows, it just fails 

in finding feasible solutions. Specific values about the objective 

(total cost) can be found in the supplemental material in which 

the numerical difference among the tested algorithms is shown.  

Second, we analyze the results from the perspective of the 

workflow type, and we focus on the results of the large and 

xlarge workflows because their sizes are close to real 

applications. For Montage workflows, A-ACO performs 

significantly better on M_100_2, M_100_3, M_1000_2, and 

M_1000_3. On M_100_1 and M_1000_1, ACS performs better. 

Clearly, ACS degrades rapidly along with the growth of the 

deadline constraint on Montage workflows. For CyberShake 

workflows, A-ACO and ACS are well matched on the large 

workflows and totally dominate the other two algorithms. 

However, when the scale grows to xlarge, A-ACO becomes 

better than ACS. Additionally, we can see that the total cost 

obtained by A-ACO grows with the deadline constraint. Finally, 

on C_1000_3, it gets comparable results with HEFT which 

implies that the nta heuristic make A-ACO lease a lot of new 

VMs for tasks. When it goes to the LIGO workflows, we can 

see that the three metaheuristic algorithms get into trouble. 

With the increase of both scale and deadline constraint, PSO 

crashes at first, then ACS loses its functionality, finally on 

L_1000_3, A-ACO also fails to find a feasible solution. But an 

interesting thing is that HEFT performs very well on LIGO 

workflows. Checking the structure of LIGO, we find that there 

is a kind of task which occupy 98% of the execution time of the 

whole workflow, and most of them are in the same layer which 

means they can be executed in parallel. Thus the way to give 

them each a new VM in HEFT is effective in meeting the 

deadline constraint. Finally, SIPHT workflows show clear 

preference to the A-ACO approach. All approaches have 

achieved 100% success rate, and the Wilcoxon rank sum test 

shows that A-ACO has made wonderful job on xlarge SIPHT 

workflows. On S_100_1 and S_100_3, A-ACO and ACS tie for 

first place. On S_100_2, A-ACO still dominates the other three 

methods. 

Overall, by checking the success rate and the total cost, we 

can make the conclusion that A-ACO is both able to meet 

different deadlines and effective to reduce the expenditure of 

executing cloud workflows.  

E. Algorithm Complexity Analysis 

In this subsection, we make analysis about the time 

TABLE VIII 

QUANTIFICATION OF TABLE VII 

 PSO ACS BASE 

Better 33 8 40 

Worse 6 6 0 

Equal 3 21 2 

NA 6 13 6 
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complexity of the four approaches. HEFT is a heuristic 

approach whose execution time is much shorter than 

metaheuristic algorithms. ACS, PSO, and A-ACO belong to the 

iterative approach which really takes time to find a 

near-optimal solution. 

HEFT only generates one solution. If the time complexity of 

assigning one task is O(1), the time complexity of HEFT is O(n) 

where n the scale of the problem. In the problem studied in this 

paper, n is the task number of workflows. The PSO method 

used in [13] derives from the original PSO algorithm which is 

used to solve the continuous space optimization problem. For 

each dimension (task), the value (VM) is determined just by 

constant times of addition and multiplication. Thus for a single 

particle in one iteration, the time complexity to generate a 

solution is O(n). Assuming the swarm size is m, the maximum 

iteration number is k, then the time complexity of PSO is 

O(n·m·k). The ACS method proposed in [29] derives from the 

ACS algorithm which is proposed to solve the combinatorial 

optimization algorithms. Its time complexity of generating a 

single solution depends on the value range of each dimension. 

Thus it considers every resource for each task’s assignment. As 

shown by (5), the size of the resource pool is equal to the 

product of the maximum number of tasks that can run in 

parallel p and the number of VM types q. Thus for a single ant 

in one iteration, the time complexity to generate a solution is 

O(n·p·q). The whole complexity of ACS is O(n·p·q·m·k). 

However, A-ACO modified the structure of the pheromone 

matrix and the solution construction method to reduce the value 

range of each dimension. More specifically, for the workflow 

scheduling problem studied in this paper, the time complexity 

of A-ACO is designed to depend on the size of the option set os 

which is mentioned in Algorithm 2. The growing speed of os 

size depends on the parameter AD. In the experiment we set AD 

to 5. Usually for a large workflow, the maximum number of 

tasks that can run in parallel p is about half of its task number, 

/ 2p n , which means for a workflow with 1000 tasks, p is 

approximately equal to 500. Considering 20 different VM 

configurations, we size of the resource pool will be 

20×500=10000. If the os size increases 5 every time (this is the 

worst situation, generally the size will not always increase 5 

after assigning a task), it can only grows to 5000 which is half 

of the pool size. Thus, the time complexity of A-ACO is much 

smaller than O(n·p·q·m·k/4). 

 Theoretically speaking, the time complexity of A-ACO is 

lower than ACS and is higher than PSO if m and k are 

considered identical. However, when we apply a meta-heuristic 

algorithm, besides the execution time of the algorithm itself, 

most time expenditure actually comes from the fitness 

evaluation, i.e. scheduling process. Following, the real run time 

of the four methods on four xlarge workflows, M_1000_1, 

C_1000_1, L_1000_1, and S_1000_1, using the computer with 

Core i3-3240 3.40GHz processor are collected. However, the 

execution time of HEFT is shorter than 100ms, which is too 

smaller to be displayed. Thus only the result of the three 

meta-heuristic methods are shown in Fig. 8. Comparing 

A-ACO with PSO, we can find that except S_1000_1, on the 

other three workflows, these two method take roughly the same 

time. The PSO algorithm uses more fitness evaluations, that is 

why the complexity of A-ACO is higher than PSO but they get 

similar execution time. To find the reason why A-ACO gets 

longer execution time on S_1000_1, we have counted how 

many choices are considered to make a solution in each 

generation. One ‘choice’ represents one available VM. The 

results are show in Fig. 9. It is clear that on S_1000_1, A-ACO 

faces more VM choices when constructing a solution, thus the 

execution will be long. This phenomenon originates from the 

characters of the tasks of S_1000_1. Their lower memory 

bounds are relatively smaller than the other test cases which 

does not exclude many VMs. Compared with ACS which 

utilizes same number of times of fitness evaluation, due to the 

novel solution construction method, the time consumption of 

A-ACO is less than a tenth of the time consumption of ACS. 

Thus, synthesizing all the experimental results, we can make 

the conclusion that the A-ACO approach is effective and 

efficient.  

VI. CONCLUSION 

In this paper, an intelligent cloud workflow scheduling 

system is proposed from the users’ perspective to reduce the 

expenditure of utilizing IaaS cloud service. The main 

contributions are characterized in two aspects. First, models of 

the applications and computing resources are improved. The 

impact of main memory is taken into consideration which leads 

to new estimation method of execution time. Such 

 
Fig. 8. Comparison of the real run time on four workflows. The x-axis 

represents the workflow name. The y-axis represent the execution time, 

measured in milliseconds. 

  

 
Fig. 9. Choice number to generate a solution on the four test cases of A-ACO. 

The x-axis represents the iteration number. The y-axis represents the choice 

number. 
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modifications make the model more practical so that the 

scheduling can be more accurate. Second, a new adaptive ACO 

variant named A-ACO is proposed in the scheduling module 

and two useful heuristic factors are employed. An auxiliary 

data structure, option set os, is used to decrease the search space 

of the problem and the complexity of A-ACO. Experimental 

results show that the method yields better results in both 

success rate and total cost. Run time analysis also shows that 

the proposed method is efficient. 

In future research, more accurate computing models to 

characterize the workflow applications and computing 

resources are needed to improve the estimation module, which 

will be helpful in estimating the execution time of the tasks, 

thus facilitating the scheduling. Meanwhile, more efficient 

scheduling approaches are still required in the scheduling 

module to continue decreasing the execution time of the 

optimization algorithms, since the time consumption is still 

high on the large workflows. Also it will be useful to develop 

online systems to solve workflow scheduling problems from 

the perspective of suppliers, which will bring more 

convenience to promote the utility of the public IaaS cloud. 
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