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Abstract—The blossoming of electric vehicles gives rise to a
new vehicle routing problem called capacitated electric vehicle
routing problem. Since charging is not as convenient as refueling,
both the service of customers and the recharging of vehicles
should be considered. In this paper, we propose a confidence-
based bi-level ant colony optimization algorithm to solve the
problem. It divides the whole problem into the upper-level sub-
problem capacitated vehicle routing problem and the lower-level
sub-problem fixed routing vehicle charging problem. For the
upper-level sub-problem, an ant colony optimization algorithm
is used to generate customer service sequence. Both the direct
encoding scheme and the order-first split-second encoding scheme
are implemented to make a guideline of their applicable scenes.
For the lower-level sub-problem, a new heuristic called simple
enumeration is proposed to generate recharging schedules for
vehicles. Between the two sub-problems, a confidence-based
selection method is proposed to select promising customer service
sequence to conduct local search and lower-level optimization.
By setting adaptive confidence thresholds, the inferior service
sequences that have little chance to become the iteration best
are eliminated during the execution. Experiments show that the
proposed algorithm has reached the state-of-the-art level and
updated eight best known solutions of the benchmark.

Index Terms—Capacitated Electric Vehicle Routing Problem,
Ant Colony Optimization, Bi-level Optimization, Combinatorial
Optimization.

I. INTRODUCTION

VEHICLE routing problems (VRPs) have been widely
studied since it was first proposed by Dantzig and

Ramser in 1959 [1]. During the past few decades, many VRP
variants were proposed to model different real-world applica-
tions [2]–[7]. Since fossil fuel is definitely the dominant energy
source in the last century, most vehicles considered in VRPs
are fossil-fueled vehicles. Benefited from the widespread gas
stations and short refueling time, the refueling problem is
usually not considered in VRPs [8]. New energy techniques
have seen great development in the past few years, which has
promoted the development of new energy vehicles, especially
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electric vehicles (EVs) [9]. Compared with fossil-fueled vehi-
cles, EVs are more environmentally friendly [10]. To pursue
the goal of carbon neutrality, logistics companies have already
started to use EVs in their daily business [11].

EVs bring new opportunities as well as new challenges to
the industry. Currently, the cruising range of EVs is still shorter
than conventional vehicles and the number of charging stations
is far less than the number of petrol stations as well [12]. Thus,
when EVs are adopted in real-world logistics applications, not
only the service orders of the customers but also the recharging
schedules of the vehicles should be considered. This extra
concern leads to a new category of VRP variants called
electric VRP (EVRP). Corresponding to some traditional VRP
variants, several EVRP variants were proposed in the past few
years [13], such as capacitated EVRP (CEVRP) [8], EVRP
with time window (EVRPTW) [14], and EVRP with pickup
and delivery (EVRPPD) [15]. In this paper, we focus on
CEVRP. The objective of CEVRP is to minimize the total
travel distance of all EVs under several constraints. Classic
constraints about customer serving and vehicle capacity that
every customer needs to be served once and vehicles cannot
be overloaded are still kept. A new constraint about energy is
added that EVs cannot run out of electricity during the journey.
If the initial capacity of the battery cannot support the EV to
serve all the customers in its route, it can recharge the battery
at charging stations on its way [8].

So far, the proposed methods to solve EVRPs can be
roughly classified into three categories, exact algorithms,
individual-based meta-heuristic algorithms, and population-
based meta-heuristic algorithms. Exact algorithms transfer
EVRPs into corresponding mixed integer linear programming
(MILP) models to solve them [16]–[18]. They can generate
very good solutions on small-scale problems, but the high
computational complexity makes exact algorithms inefficient
on larger problems with more than 50 customers [19]. To
solve large-scale EVRPs, a number of individual-based meta-
heuristic algorithms have been proposed by combining dif-
ferent local search methods and perturbation methods [14],
[20], [21]. These algorithms can be very effective, but their
effectiveness highly depends on the operators and the quality
of the initial solutions, which makes them easy to be trapped
into poor local optima [22]. Because of the good global search
ability, population-based meta-heuristic algorithms were also
applied [8], [23], [24]. Ant colony optimization (ACO) [8] is
an outstanding one among them since it can utilize problem
information well during the solution construction.
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ACO has been widely used to solve different VRPs [8],
[25]–[27]. The encoding scheme is always a major concern
[28]. Currently, there are two kinds of solution encoding
schemes commonly used in meta-heuristic algorithms to solve
VRPs: 1) direct and 2) indirect. The direct encoding scheme
encodes a solution directly as a set of different routes, each
route being a sequence of services by a vehicle [26]. The
indirect encoding scheme encodes a solution as a giant tour of
all customers, which is decoded into a set of feasible routes
by an optimal split (i.e., dynamic programming) [29]. The
indirect encoding is also known as the order-first split-second
encoding [30]. The direct encoding scheme has been widely
adopted in ACO [25]–[27], but since it is hard to decide the
returning timing of vehicles (ACO typically opens a new route
only when the current route is full), using direct encoding in
ACO usually requires a good inter-route local search method.
Indirect encoding does not need the aid of inter-route local
search methods, but using indirect encoding in ACO would
cause a mismatch between the pheromone matrix and the
routes since the pheromone matrix is updated according to
the giant tour rather than the routes. Both encoding schemes
have their pros and cons. To the best of our knowledge, there
is no guideline so far about which one is more suitable for
ACO and when we should use one or another.

Meanwhile, when ACO is applied to CEVRP, there is an ex-
tra concern about vehicle recharging. Considering the serving
order of customers and the recharging schedule of vehicles
simultaneously leads to a huge and complex search space
[19]. Treating CEVRP as a bi-level optimization problem is
a promising way to decrease the complexity of the problem
where the serving order of customers is the upper-level sub-
problem and the recharging schedule of vehicles is the lower-
level sub-problem [8]. In this regard, which sub-solution of
the upper-level sub-problem should be fed into the lower-level
sub-problem is a critical issue.

To address the aforementioned issues and challenges, we
propose a confidence-based bi-level ACO (CBACO) algorithm
in this paper to solve CEVRP effectively and efficiently. The
contributions of CBACO are shown as follows:

• A confidence-based selection strategy is proposed to
choose promising sub-solutions of the upper-level sub-
problem to conduct local search and lower-level optimiza-
tion. The confidence-based selection strategy can save
nearly half of the execution time on large-scale instances,
thus improving the efficiency of the algorithm.

• The effectiveness and efficiency of both the direct and
indirect encoding schemes are investigated in the context
of solving CEVRP with ACO. Accordingly, a guideline of
under what circumstances an encoding scheme should be
used is given. In addition, for the direct encoding scheme,
an improved 2opt* operator is proposed as the inter-route
local search method.

• A new heuristic called simple enumeration (SE) is pro-
posed in CBACO to generate good recharging schedules
for the lower-level sub-problem, fixed routing vehicle
charging problem (FRVCP). The complexities of SE and
FRVCP are analyzed both theoretically and empirically
to gain an insight into CEVRP.

The rest of this paper is organized as follows. Section II
shows the related work. Section III gives the formal description
of CEVRP. The proposed algorithm CBACO is introduced in
Section IV in detail. The experiments are set up in Section
V and the results are analyzed in Section VI. Finally, the
conclusions are drawn in Section VII.

II. RELATED WORK

In this section, the methods proposed for different EVRPs
are reviewed. These methods can be roughly classified into
three categories: 1) exact methods, 2) individual-based meta-
heuristic methods, and 3) population-based meta-heuristic
methods.

The exact methods generate optimal solutions for EVRPs by
transferring the problem into a corresponding mathematical
programming model and solve them by mathematical pro-
gramming software such as CPLEX and Gurobi. Lin [17] built
a MILP model for an EVRP that considered the influence of
load on the energy consumption of the EV and used CPLEX
to solve the problem. The experiments showed that CPLEX
found the optimal solution for a small-scale case with 13 cus-
tomers. Chen et al. [15] modeled EVRPPD as a mixed-integer
quadratically constrained programming problem and solved
several instances with no more than 20 customers by CPLEX
successfully. Xiao et al. [31] proposed a comprehensive energy
consumption model for EVRPTW and applied CPLEX as
well. The scale of the experiment was also small that no
more than 30 customers were considered. Montoya et al. [19]
studied another EVRP variant that considered the non-linear
charging characteristic of EV and they have found the optimal
solutions for several instances with less than 50 customers by
Gurobi. These studies showed that the exact methods and the
corresponding software are effective for small-scale problems,
but they are inefficient when handling large-scale problems.
This fact is not surprising since these methods originally
cannot solve the traditional large-scale VRPs well [32] and
adding the battery constraint makes EVRPs even harder than
VRPs.

Individual-based meta-heuristic methods have been widely
applied to solve many large-scale combinatorial optimization
problems [22], and EVRPs are no exception. Many individual-
based meta-heuristic algorithms have been applied to EVRPs,
including tabu search (TS) [33], simulate annealing (SA) [34],
iterative local search (ILS) [22], variable neighborhood search
(VNS) [35], and adaptive large neighborhood search (ALNS)
[5]. EVRPTW was firstly proposed in 2014 by Schneider et al.
[14] and Afroditi et al. [36]. Along with the problem, Schnei-
der also designed a individual-based meta-heuristic algorithm
that combined TS with VNS to solve the problem. Following
their studies, Bruglieri et al. [37], [38] changed the objective
from distance to time and added a local branching method into
the VNS algorithm. During the IEEE WCCI2020 competition
on EC for EVRP, the VNS algorithm proposed by Woller and
the SA algorithm proposed by Mak-Hau performed very well
and ranked in the first and the second places [39]. Montoya et
al. [19] proposed an ILS algorithm for the EVRP with non-
linear charging and achieved good results. ALNS was also
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used in several works and showed good performance [21],
[40], [41]. Generally, the effectiveness of these algorithms
is commendable but they highly rely on the applied local
search methods, which are problem-dependent. Thus, they may
frequently encounter the premature convergence problem if the
perturbation or destruction methods do not work well [22].

Population-based meta-heuristic algorithms have been tried
in some works including GA and ACO. Guo [23] and Shao
[24] proposed two GA methods for EVRPTW. Due to inappro-
priate encoding schemes, these two algorithms are only effec-
tive for some small-scale problems. Previously, we proposed a
bi-level ACO (BACO) algorithm for CEVRP that decomposed
the problem into two levels, CVRP and FRVCP [8]. For
the upper-level sub-problem CVRP, the sub-solutions of the
serving orders of customers are generated only considering the
capacity constraint, which may violate the battery constraint.
Then, these sub-solutions are repaired at the lower level that
the recharging schedules are generated to make them energy
feasible. According to the difficulty of each level, we proposed
OS-MMAS for CVRP and removal heuristic (RH) for FRVCP.
Although BACO has outperformed the winners of the IEEE
WCCI2020 competition of EVRP, we found that using indirect
encoding scheme in ACO would cause a mismatching between
the generated routes and the pheromone matrix. Also, as a bi-
level optimization algorithm, which sub-solutions of the upper
level sub-problem should be refined and sent to the lower level
is still an open issue for BACO. These two problems motivate
us to investigate both the direct and indirect encoding schemes
and to propose CBACO.

III. PROBLEM DEFINITION

CEVRP is proposed in [42] by extending the traditional
CVRP. The “CEVRP” studied in this paper means exactly the
“EVRP” in [42]. To follow a standard nomenclature, we added
“capacitated” to the name of the problem. A CEVRP is usually
defined on a fully connected weighted graph G = (V,E).
There are three kinds of vertices V = {0} ∪ Vc ∪ Vf : depot
{0}, customers Vc, and charging stations Vf . Depot is the place
where every EV departs from and returns to. In CEVRP, only
one depot is considered and it is indexed as 0. Customers Vc

represent the tasks that need to be executed. Each customer
i ∈ Vc has a fixed number of cargo demand, denoted as ci.
Charging stations Vf provide charging service to EVs. Each
edge (i, j) ∈ E has a fixed weighted value dij representing
the distance between i and j. Besides the load limit Qc like
conventional vehicles, EVs also have a battery limit Qb. The
consumption rate of battery is defined as rb that dij ·rb amount
of battery will be consumed if (i, j) is traversed.

For mathematical modeling, an extended set of charging
stations V̂f is introduced where each charging station i ∈ Vf is
copied 2|Vc| times1. Two more variables ui and yi are added
to represent the remaining load capacity and the remaining
battery of an EV when it arrives at i. Defining the variable xij

1In the worse case, each EV serves only one customer and all EVs need to
recharge twice at the same recharging station on the way to serve customers
and on the way back, respectively.
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Fig. 1. An example solution of CEVRP with three routes.

that if (i, j) is traversed by an EV, xij = 1, otherwise xij = 0,
the mathematical model of CEVRP is given as follows [42]:

min F (x) =
∑

i∈V,j∈V,i̸=j

dijxij , (1)

s.t. ∑
j∈V,i ̸=j

xij = 1,∀i ∈ Vc, (2)∑
j∈V,i ̸=j

xij ≤ 1,∀i ∈ V̂f , (3)∑
j∈V,i̸=j

xij −
∑

j∈V,i̸=j

xji = 0,∀i ∈ V, (4)

uj ≤ ui − cixij +Qc(1− xij),∀i ∈ V,∀j ∈ V, i ̸= j, (5)
0 ≤ ui ≤ Qc,∀i ∈ V, (6)

yj ≤ yi − rbdijxij +Qb(1− xij),∀i ∈ Vc,∀j ∈ V, i ̸= j,
(7)

yj ≤ Qb − rbdijxij ,∀i ∈ V̂f ∪ {0},∀j ∈ V, i ̸= j, (8)
0 ≤ yi ≤ Qb,∀i ∈ V, (9)

xij ∈ {0, 1},∀i ∈ V,∀j ∈ V, i ̸= j. (10)

(1) shows the objective of CEVRP that is to minimize the
total traveling distance of all vehicles. (2) indicates that each
customer should be served exactly once. (3) literally means
that each copy of a charging station can be visited no more
than once. Since each charging station has 2|Vc| copies, (3)
actually means that each charging station can be visited at
most 2|Vc| times. To explain (3) clearly, an example solution
is shown in Fig. 1. Since there are 11 customers, each station
has 2 × 11 = 22 copies. The first route r1 does not visit
any charging station. The second route r2 visits the charging
station S1 once, meaning that one S1 copy is visited and
the other copies are not visited. The third route r3 visits the
charging station S2 twice, meaning that two S2 copies are
visited and the other copies are not visited. All copies of S3

are not visited. (4) represents the flow conservation that the
indegree (vehicle entering) of a node should be equal to its
outdegree (vehicle leaving). (5) and (6) represent the capacity
constraint that an EV cannot be overloaded during the trip
and each customer’s demand must be fully served. (7), (8),
and (9) represent the battery constraint that an EV cannot run
out of battery during the trip. Besides these constraints, there
is another assumption indicated by (7), (8), and (9) that for a
feasible route, an EV will always recharge its battery enough
at a station to reach the next charging station or the depot.
(10) defines the value range of the variable.
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IV. CONFIDENCE-BASED BI-LEVEL ANT COLONY
OPTIMIZATION

In this section, CBACO is introduced in detail. First, the
overall process with the confidence-based selection method
is explained. Then, the sub-solution construction methods of
customer serving schedules with different encoding schemes
and the local search methods are illustrated. Afterward, the
newly proposed SE heuristic is shown.

A. Overall Process with Confidence-based Selection

1) Process: The overall process of CBACO is shown in
Algorithm 1. At the beginning, the algorithm components and
parameters are initialized, and the global best solution xgb is
initialized by the nearest neighbor and SE (lines 1-2). In each
generation, the applied ACO algorithm first builds capacity-
feasible sub-solutions of the upper-level sub-problem CVRP
without considering the battery constraint (line 4). Then,
through confidence-based selection, promising sub-solutions
are chosen to be refined (lines 5-22). The refined sub-solutions
are further screened to get the sub-solutions that have a
chance to generate the iteration best solution to conduct the
lower-level optimization (lines 23-29). Recharging schedules
are generated by SE to repair the selected sub-solutions to
be electricity-feasible (lines 30-34). Afterward, these feasible
solutions are evaluated and the pheromone information is
updated according to the iteration best solution (lines 35-
36). Whenever the stopping criterion is met, the recharging
schedule of the global best solution is finally improved by
the restricted enumeration method that we proposed in our
previous work [8] and returned.

2) Confidence-based Selection: When local search methods
are adopted to enhance the effectiveness of a population-
based meta-heuristic algorithm, a common problem is how
to select the promising solutions to conduct local search. A
similar problem, which sub-solution of the upper-level sub-
problem should be considered for the lower-level optimization,
is also frequently encountered when a population-based meta-
heuristic algorithm is used to solve a bi-level optimization
problem. Referring to memetic algorithms [43], there are
mainly three selection methods: 1) only selecting the iteration
best or overall best solutions [44]; 2) selecting all solutions
[45]; 3) selecting some solutions according to some strategies
[46]. The first method is efficient but not effective sometimes
since it may miss many promising solutions. The second
method is effective but not efficient since many poor solutions
are included. The third one can be both effective and effi-
cient, although it is usually problem-dependent that requires
expertise to design. For VRPs, usually the second strategy that
selects all is adopted [29], [45].

In CBACO, we propose a confidence-based selection
method in order to increase the efficiency of BACO without
losing effectiveness. The confidence-based selection method
belongs to the third category that selects some sub-solutions.
The basic idea of the confidence-based selection is to knock
the sub-solutions that have small probability to be the iteration
best out. Unlike some other bi-level optimization problems that
the sub-solution of the upper-level sub-problem is hard to be

Algorithm 1: CBACO
Input: confidence ratio of local search γl, confidence ratio of

recharging γr , confidence interval δ, fitness function
F , fitness function f ′ without considering recharging.

Output: final solution xgb

1 initialize pheromone information and xgb;
2 P = empty queue; r = 0; g = 0;
3 while the stopping criterion is not met do
4 build capacity-feasible sub-solutions S = {xu

1 , . . . ,x
u
m}

by ACO;
5 S1 = S;
6 if g > δ then
7 xu

a = argminxu
i ∈S f ′(xu

i );
8 local search on xu

a and get x̂u
a ;

9 v1 = f ′(xu
a)− f ′(x̂u

a);
10 v2 = max(P );
11 if v2 < v1 then
12 v2 = v1 · γl;
13 end
14 S1 = {xu

i |xu
i ∈ S ∧ f ′(xu

i )− v2 ≤ f ′(x̂u
a)};

15 end
16 local search on the sub-solutions in S1 and get Ŝ1;
17 v2 = max({f ′(xu

i )− f ′(x̂u
i )|x

u
i ∈ S1, x̂u

i ∈ Ŝ1});
18 v2 = max(v1, v2);
19 push v2 into the back of P ;
20 if |P | > δ then
21 pop the first value in P ;
22 end
23 xu

b = argminx̂u
i ∈Ŝ1

f ′(x̂u
i );

24 generate xl
b according to xu

b by SE, denote the
corresponding solution as xb = (xu

b ,x
l
b);

25 v3 = F (xb)− f ′(xu
b );

26 if r > v3 then
27 r = v3 · γr;
28 end
29 S2 = {x̂u

i |x̂u
i ∈ Ŝ1 ∧ f ′(x̂u

i ) + r ≤ F (xb)};
30 generate xl

i for x̂u
i ∈ S2, get S3 = {xi|x̂u

i ∈ S2};
31 v3 = min(v3, {F (xi)− f ′(x̂u

i )|xi ∈ S3, x̂u
i ∈ S2});

32 if r == 0 or r > v3 then
33 r = v3;
34 end
35 find the iteration best solution xib in S3 ∪ {xb};
36 update xgb and pheromone information by xib;
37 g = g + 1;
38 end
39 adjust the recharging schedules of xgb by the restricted

enumeration method;
40 return xgb;

evaluated individually [47], the customer serving schedules
in CEVRP can be evaluated individually just like normal
CVRP. We denote the total length of a sub-solution xu

i as
f ′(xu

i ). It is worth noting that both local search and lower-
level optimization may change the rank of the sub-solutions,
meaning that a best sub-solution xu in terms of f ′ is not
necessarily the best final solution x.

Based on f ′, the confidence-based selection method is con-
ducted by screening the sub-solutions according to a selected
exemplar and an estimated confidence degree. If within the
confidence degree a sub-solution is possible to surpass the
exemplar, we include the sub-solution to do following execu-
tions. Specifically, to select promising sub-solutions for local
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search, after ACO builds the capacity-feasible sub-solutions
(line 4), we find the sub-solution with the best f ′ as the
exemplar xu

a and conduct local search on it (lines 7-8). The
improvement of xu

a in terms of f ′, denoted as v1, is compared
with the largest improvement v2 that we recorded in the past δ
generations. If v1 is larger, we use it multiplying a ratio γl as
the confidence degree where γl ≥ 1, otherwise v2 is set as the
confidence degree (lines 9-13). According to the exemplar and
the confidence degree, the promising sub-solutions are selected
(line 14). These sub-solutions will be improved by the local
search methods, and the largest improvement is recorded (lines
16-22).

Then, among these improved sub-solutions, again we select
the sub-solution with the best f ′ as the exemplar xu

b (line 23).
Its corresponding recharging schedule xl

b is generated by SE
(line 24). Afterward, we check how much extra length v3 is
brought by xl

b. This value is compared with r, which is the
minimum extra length brought by recharging schedules that
we have ever checked during evolution. If r is larger than v3,
r decreases to v3 · γr where γr ≤ 1 (lines 25-28). Using r
as the confidence degree, we select promising sub-solutions
to generate corresponding schedules for them (lines 29-30).
Then, r is updated (lines 31-34).

The basic idea of these two steps of selection is similar, but
the ways to set the confidence degree are different. For the
confidence degree of the local search step, a larger value would
recruit more sub-solutions. What we want is a large enough
value to cover more sub-solutions meanwhile small enough
to block the poor sub-solutions. Generally, the improvement
brought by the local search methods decreases along with the
execution of the algorithm since the solutions found by the
algorithm will be closer and closer to some optima. Thus, we
use the largest improvement of the previous δ generations as
the confidence degree. Contrast to the local search step, for
the confidence degree of the lower-level optimization step, a
smaller value would recruit more sub-solutions. Thus, we use
the smallest extra distance brought the recharging schedule that
we have ever found as the confidence degree. γl and γr are
used when the chosen exemplars give the confidence degree.

B. ACO for Route Construction

Pheromone Setting: ACO uses a constructive way to build
routes that each time an ant chooses the next customer to visit
based on the pheromone value and the heuristic information
like the distance between the next customer and its current
location. In CBACO, we use the max-min ant system (MMAS)
algorithm for route construction because of its better capability
than the other ACO variants [48]. Since the charging stations
are not considered in this step, the size of the pheromone
matrix Φ is n × n where n = |Vc| + 1, each element
φij representing the pheromone value of going to j from i.
Besides, there are two boundaries of the pheromone values
that are calculated as:

φmax =
1

(1− ρ) · f(xgb)
, (11)

φmin =
φmax(1− n

√
pr)

(n/2− 1) n
√
pr

, (12)

Algorithm 2: Route Construction (Direct Encoding)
Input: pheromone matrix Φ, edge set E, customer set Vc,

capacity constraint Qc, the number of vehicles K.
Output: a set of capacity-feasible routes Γ. //Γ == xu

1 k = 0, append 0 to Γk, Qk = 0;
2 while Vc is not empty do
3 V ′

c = {i|i ∈ Vc ∧ ci ≤ Qc −Qk};
4 if

∑
i∈Vc

ci ≤ Qc · (K − k − 1) or V ′
c == ∅ then

5 add depot 0 into V ′
c ;

6 end
7 take the last node i in Γk;
8 j = roulette wheel selection(V ′

c , i);
9 append j to Γk;

10 if j == 0 then
11 append Γk to Γ;
12 k = k + 1, append 0 to Γk, Qk = 0;
13 else
14 Qk = Qk + cj ;
15 remove j from Vc;
16 end
17 end
18 append 0 to Γk, append Γk to Γ;
19 return Γ;

Algorithm 3: Route Construction (Indirect Encoding)
Input: pheromone matrix Φ, edge set E, customer set Vc,

capacity constraint Qc.
Output: a set of capacity-feasible routes Γ. //Γ == xu

1 T = [0], V ′
c = Vc;

2 while V ′
c is not empty do

3 take the last node i in T ;
4 j = roulette wheel selection(V ′

c , i);
5 append j to T ;
6 remove j from V ′

c ;
7 end
8 Γ = split(T,Qc);
9 return Γ;

where ρ is the evaporation rate. pr is usually set to 0.05.

Route Construction: There are mainly two encoding
schemes that were widely used in meta-heuristic algorithms
for route construction of CVRP, direct encoding and indirect
encoding [30]. In the direct encoding scheme, a solution is
directly encoded as different routes, each route representing a
vehicle. In the indirect encoding scheme, a solution is encoded
as a giant tour that contains all customers. The routes of
different vehicles are obtained through a splitting process.

The route construction process of ACO with the two en-
coding schemes are shown in Algorithm 2 and Algorithm
3, corresponding to line 4 of Algorithm 1. For the direct
encoding scheme (Algorithm 2), we initialize a route starting
from 0 in the first place (line 1). Then, for every step of
route construction, a candidate list V ′

c is organized. All the
customers that have not been served and have less cargo
demand than the remaining capacity of the EV are put into V ′

c

(line 3). We also need to judge whether the depot is allowed
to be added into V ′

c (lines 4-6). An ant selects the next node
from V ′

c through a roulette wheel selection strategy where the
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probability of each candidate node j is calculated by:

pij =
φα
ij/d

β
ij∑

l∈V ′
c
φα
il/d

β
il

, if j ∈ V ′
c (13)

where α and β are two parameters to adjust the weights of
pheromone and heuristic information (lines 7-8). The selected
node is appended to the route (line 9). If the node is a
customer, the route construction process continues (lines 13-
16). If it is the depot, we starts a new route (lines 10-12).

For direct encoding, when the vehicle is allowed to return is
a problem, i.e. when the candidate node set V ′

c should include
the depot 0. A simple strategy is to allow a vehicle to return
only when it cannot serve any more customer. However, this
returning strategy often lead to bad results. We use an example
shown in Fig. 2(a) to explain. Suppose we have five customers.
Three of them {1,2,3} require one unit cargo each and the
other two {4,5} require two units cargo each. The capacity
of a vehicle is five. Assume a vehicle departs from depot 0
and already chooses customer 5 and 4 successively. Since it
can still serve one customer with one unit cargo demand, it
will choose customer 3 and then return to depot. Then, the
second vehicle will serve customer 1 and 2. However, the
total length of these two routes {[1,2], [5,4,3]} is 16 that is
longer than the optimal routes {[1,2,3], [4,5]} with length 15.
In Algorithm 2, we propose a new strategy that when the
total demand of all remaining customers is less than the total
capacity of all remaining vehicles or when there is no feasible
customer, the depot is added into the candidate set V ′

c for the
vehicle to choose (lines 4-6). If the number of vehicles K
is not provided, it can be estimated as K = ⌈

∑
i∈V ci/Qc⌉.

This strategy can alleviate the problem shown in Fig. 2(a),
although it cannot radically solve it. There are some other
strategies, such as setting a fixed number depot copies and
always including depot in V ′

c if the vehicle is not in the depot
[27]. However, these strategies may lead to capacity-infeasible
routes or excess number of routes. No matter which strategy
is used, the direct encoding scheme usually requires a good
inter-route local search method to amend the generated routes.

For the indirect encoding (Algorithm 3), starting from the
depot (line 1), it builds a giant tour containing all customers
first (lines 2-7). In each step of the tour construction, the next
customer is also selected through a roulette wheel selection
with the same probability calculation method (13). After all
customers are inserted into the giant tour, a splitting algorithm
[29] is applied to partition the giant tour into capacity-
feasible routes (line 8). The splitting algorithm is a dynamic
programming method that enumerates all feasible partitions
and choose the one with shortest total length. Thus, we do
not need to consider the returning problem in the indirection
encoding scheme. However, from Fig. 2(b), we can find that
when building the giant tour, the move from customer 2 to
3 is actually different from the move from customer 3 to 4
since the edge (3, 4) is finally cut by the splitting algorithm.
Thus, there is mismatching between the final routes and the
pheromone matrix. This mismatching problem may affect the
performance of the algorithm if the length of the edges linked
to depot occupies a large proportion of the total length.
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Fig. 2. Different encoding schemes. (a) direct encoding, (b) indirect encoding.
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Fig. 3. 2opt* operation for directed and undirected routes.

So far, there is not a comprehensive comparison that shows
which encoding scheme suits ACO more. In this paper, we use
both encoding schemes in CBACO to see which one is better.
For the direct encoding scheme, we propose an improved 2-
opt* method as the inter-route local search method. 2-opt* is
a famous inter-route operator that was originally proposed for
the directed routes of VRPTW [49]. For each pair of links from
two different routes, 2-opt* first breaks them and then swaps
the tails of the two routes. If the swap leads to a better solution,
the new solution is accepted. Otherwise, a new pair of links is
tried. Since the routes are undirected in CEVRP, we consider
one more situation where the head of a route is swapped with
the tail of another route. Fig. 3 gives the demonstration of the
improved 2-opt* operator. Following [49], for the intra-route
local search methods, we choose 2-opt and node-shift. 2-opt
replaces two non-adjacent edges (i, i+) and (j, j+) by (i, j)
and (i+, j+), where i+ and j+ represent the nodes after i and
j in the route. Node-shift shifts a node to another position in
the route. Because of the complexity of each operator, the
first improvement operation is applied to 2-opt* and the best
improvement operation is applied to 2-opt and node-shift [50].
The sequence of using these three operators also follows [49]
that 2-opt, 2-opt*, and node-shift are used successively. For
the indirect encoding, we keep our original settings of BACO
that only 2-opt is applied.

Pheromone Updating: After local search and lower-level
optimization, we can get some feasible solutions. At the
end of each iteration, we find the iteration best solution
xib among the feasible solutions and use it to update the
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pheromone values (lines 35-36, Algorithm 1). If the iteration
best solution xib is better than the global best solution xgb, xgb

is updated xgb = xib. Then, the two pheromone boundaries
φmax and φmin are updated according to (11) and (12). Finally,
each pheromone value in the pheromone matrix is updated
according to:

φij(t+ 1) = min(max(ρ · φij(t) + ∆φbest
ij , φmin), φmax)

(14)

∆φbest
ij =


1/f(xib) if (i, j) ∈ Γib (direct)
1/f(xib) if (i, j) ∈ Tib (indirect)
0 otherwise.

(15)

It should be noted that when the direct encoding scheme
is used, the pheromone matrix is updated according to the
capacity-feasible routes Γ corresponding to xu

ib. When the
indirect encoding scheme is used, the pheromone matrix is
updated according to the giant tour T rather than the capacity-
feasible routes generated by splitting.

C. Simple Enumeration for Recharging Schedule Generation

In CBACO, we use a new heuristic method called simple
enumeration to generate the recharging schedules for the
lower-level optimization FRVCP. Algorithm 4 shows the pro-
cess of SE. First, the best station between each pair of nodes
is found (lines 1-3). This process can be done in advance as
a pre-processing so that we do not need to repeat this process
every time when we use SE. Then, we estimate how many
stations are needed by calculating the total length of the route
(lines 4-5). lb represents the minimum number of stations that
are needed. Afterward, we consider to insert n = lb and
n = lb + 1 charging stations into the routes, respectively.
Larger values than lb+1 are not considered since under normal
circumstances, inserting more charging stations means more
detours which may bring unnecessary increase to the length
of the route. The function ‘addStations’ will enumerate all the
feasible combinations of the positions in the routes to insert
n stations, and the best insertion is recorded into Γ∗ (lines
9-26).

SE is proposed based on the posteriori knowledge that we
obtained from our previous work. The analyses of the final
solution obtained by BACO show that a vehicle at most will
charge four times during its trip. In most cases, it will only
charge once or twice. This is consistent with real life that
a battery-electric truck usually can run three hours with a
fully charged battery [51]. If a vehicle charges twice, it can
already run nine hours. Since a vehicle does not need to charge
many times during its trip, enumerating the possible recharging
schedules is not super computationally expensive. In addition,
in SE, we only consider one charging station between each
pair of nodes, which also decreases the algorithm complexity.
This setting may miss the best recharging schedule for some
routes, but in most cases, it can generate very good recharg-
ing schedules. The theoretical and empirical analyses of the
complexities of FRVCP and SE are given in the experimental
studies to verify the rationality of SE.

Algorithm 4: Simple Enumeration
Input: an electricity-infeasible route Γ ∈ Γ starting and

ending at 0, edge set E, customer set Vc, charging
station set Vf , maximum battery capacity Qb, battery
consumption rate rb.

Output: an electricity-feasible route Γ∗.
1 foreach (i, j), i, j ∈ Vc ∪ {0} ∧ i ̸= j do
2 find θij = θji = argminθ∈Vf

diθ + dθj ;
3 end
4 calculate the total length of Γ as dΓ;
5 lb = ⌈dΓ · rb/Qb⌉;
6 Γ′ = Γ, Γ∗ = Γ, fΓ∗ = +∞;
7 for sn = lb → lb+ 1 do
8 call the following recursion function;
9 Function addStations(m = 0,n = sn,Γ′):

10 for i = m → |Γ| − 1− n do
11 add θΓi,Γi+1 into Γ′ between Γ′

j and Γ′
j+1

where Γ′
j == Γi ∧ Γ′

j+1 == Γi+1;
12 denote the distance between this station and the

previous station or depot in Γ′ as dp;
13 if dp · rb > Qb then
14 remove θΓi,Γi+1 from Γ′;
15 break;
16 end
17 if n > 1 then
18 addStations(m+ 1, n− 1, Γ′);
19 else
20 if Γ′ is electricity-feasible and F (Γ′) < fΓ∗

then
21 Γ∗ = Γ′, fΓ∗ = F (Γ′);
22 end
23 end
24 remove θΓi,Γi+1 from Γ′;
25 end
26 End Function;
27 end
28 return Γ∗;

V. EXPERIMENTAL SETUP

A. Benchmark Test Cases

The benchmark proposed for the IEEE WCCI2020 compe-
tition on EC for EVRP [42] is taken to check the performance
of CBACO. The test cases in this benchmark are derived from
two famous CVRP test sets [2], [52] by evenly distributing
charging stations on the map and switching traditional vehicles
to EVs. The test cases can be divided into two groups. The first
group contains seven relatively small instances in which the
number of customers is 21 ≤ |Vc| ≤ 100. The second group
contains ten relatively large instances in which the number of
customers is 100 < |Vc| ≤ 1000. Details of the instances are
shown in Table I. Also, four representative cases with different
customer distributions are shown in Fig. 4. The maps of the
other test cases can be found in [42].

B. Algorithm Settings

The performance of CBACO is compared with BACO, GA,
SA, VNS, and ILS. BACO is proposed in our previous work
[8]. GA, SA, and VNS are the three winners of the WCCI2020
EVRP competition [39]. ILS is proposed in [19] for EVRP
with non-linear charging function that can be easily used to
solve CEVRP. Since both codes and papers of GA, SA, and
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TABLE I
TEST CASES OF CEVRP BENCHMARK SET.

Name Customer Station Route
E22 21 8 4
E23 22 9 3
E30 29 6 4
E33 32 6 4
E51 50 5 5
E76 75 7 7
E101 100 9 8
X143 142 4 7
X214 213 9 11
X352 351 35 40
X459 458 20 26
X573 572 6 30
X685 684 25 75
X749 748 30 98
X819 818 25 171
X916 915 9 207
X1001 1000 9 43
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Fig. 4. Representative test cases. The blue dots represent customers. The red
square represents the depot. The black triangles represent charging stations.
(a) X351, (b) X573, (c) X819, (d) X1001.

VNS are not published yet, the results of these three algorithms
are taken from the competition report [39]. CBCAO, BACO,
and ILS are implemented by ourselves in C++ and executed
on Intel i7-6700 3.40Hz CPU with Arch Linux system. The
stopping criterion is set to a fixed execution time following
[8] that allows the algorithms to fully converge:

ExeT ime = ϑ · |Vc|+ |Vf |
100

(hr), (16)

where |Vc|+ |Vf | is the total number of nodes of the problem.
ϑ is set to 1, 2, 3 for E22-E101, X143-X916, and X1001,
respectively.

The parameters of CBACO related to the MMAS algorithm
follow the conventional setting [48]. The pheromone evapo-
ration speed ρ is set to 0.98. The population size is set to
|Vc| + 1 which is the number of customers and depot. The
weights in 13, α and β, are set to 1 and 2 according to
the experimental studies of several ACO algorithms including
BACO [8], [48], [53]. Another setting that is not shown in
Algorithm 2 and Algorithm 3 is the utilization of neighborhood

candidate list. For the test cases with more than 500 customers,
a neighborhood candidate list is calculated in advance for
each customer. Each time, the next customer is chosen from
the candidate list of the last one rather than all remaining
customers, unless there is no feasible customers in the list.
This is a common strategy that is widely adopted by ACO to
accelerate the convergence speed [48], [54]. The size of the
candidate list is set to 20. As to the three parameters related
to the confidence-based selection method, they are tuned in
the following experiment. CBACO with the direct encoding
scheme is denoted as CBACO-D. Similarly, CBACO with the
indirect encoding scheme is denoted as CBACO-I.

For the following experiments, if there are no special
settings, we run the algorithms 30 times on each instance
to get the statistical information including the best objective
value, the mean objective value, the standard deviation, and
the significance test results. Friedman test is adopted to
compare multiple algorithms with Holm post-hoc analysis. The
significance level is set to 0.05 with correction.

C. Parameter Tuning

There are three parameters related to the confidence-based
selection, δ, γl, and γr. δ and γl take charge of selecting
sub-solutions to conduct the local search process. γr takes
charge of selecting sub-solutions to conduct the lower-level
optimization.

Generally, larger δ and γl will recruit more sub-solutions
for local search which may result in a waste of computing
resources. On the contrary, smaller δ and γl will recruit
less sub-solutions for local search, but some promising sub-
solutions may be missed. To get an appropriate setting, we test
three groups of values, (δ = 10, γl = 1), (δ = 30, γl = 1.2),
and (δ = 50, γl = 1.4) on X143 and X214. CBACO without
confidence-based selection is taken as the baseline. By setting
a fixed iteration number 104, we evaluate the settings by two
indicators, 1) how many sub-solutions are recruit to conduct
local search and 2) the final objective value. The confidence-
based selection for lower-level optimization is not used in
order to avoid the influence of other factors. The experimental
results are shown in Fig. 5 and Table II.

From the results, we can see that the confidence-based se-
lection of local search works well on both X143 and X214 for
CBACO-I. Considering both the number of solutions selected
and the final objective values, we choose (30, 1.2) for CBACO-
I since (10,1) generated significantly worse results on X143.
However, for CBACO-D, the confidence-based selection of
local search seems useless on X214. We have further tested
the selection method for CBACO-D on the other instances and
found that when the scale is smaller than 150, it is effective.
Otherwise, it has little influence to the algorithm. Thus, we
apply confidence-based selection of local search to CBACO-
D only when the scale of the test instance is smaller than 150.
The reason of the ineffectiveness of the selection method when
the scale is large is because the inter-route local search method,
i.e. 2opt*, would change the quality of a solution greatly for a
large-scale instance, which makes it hard to predict how much
improvement it will bring.
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TABLE II
PERFORMANCE OF CBACO UNDER DIFFERENT δ AND γl VALUES.

CBACO-D
BL (10,1) (30,1.2) (50,1.4)

X143 mean 15953.29 16033.61↑ 16003.96↕ 15995.04↕
std 37.17 79.43 81.82 84.07

X214 mean 11731.87 11725.30↕ 11732.22↕ 11717.49↕
std 38.68 26.68 40.11 38.81

CBACO-I
BL (10,1) (30,1.2) (50,1.4)

X143 mean 16017.15 16074.09↑ 16061.56↕ 16042.69↕
std 37.99 66.67 63.04 33.35

X214 mean 11277.03 11318.40↕ 11324.46↕ 11273.51↕
std 69.27 74.76 65.62 69.98

‘BL’ means baseline that does not apply confidence-based selection.
↕, ↑, and ↓ mean that the performance is equal to, significantly worse
than, and significantly better than the baseline according to Wilcoxon
rank-sum test with significance level of 0.05, respectively.

Fig. 5. The number of solutions that were selected to conduct local search.

Meanwhile, smaller γr will recruit more sub-solutions to be
considered in the lower-level optimization and larger γl will
recruit less. We also set three values for γr, 1.0, 0.8, and 0.6.
The experimental results are shown in Table III and Fig. 6.

From the results, we can see that the confidence-based
selection method has successfully selected a small number
of sub-solutions to conduct the lower-level optimization for
both CBACO-D and CBACO-I. Different γr values have little

TABLE III
PERFORMANCE OF CBACO UNDER DIFFERENT γr VALUES.

CBACO-D
BL 1 0.8 0.6

X143 mean 15953.29 15949.11↕ 15949.11↕ 15949.11↕
std 37.17 38.01 38.01 38.01

X214 mean 11731.87 11706.73↕ 11706.73↕ 11714.71↕
std 38.68 57.67 57.67 52.49

CBACO-I
BL 1 0.8 0.6

X143 mean 16017.15 16016.00↕ 16016.00↕ 16012.51↕
std 37.99 35.22 35.22 34.92

X214 mean 11277.03 11246.33↕ 11260.80↕ 11260.80↕
std 69.27 52.16 65.82 65.82

Fig. 6. The number of solutions that were selected to conduct lower-level
optimization.

influence to the selection, which means the algorithm is not
sensitive to γr. For the sake of generality, we use 0.8 in the
following experiment in case that some other instances may
require less strict threshold.

VI. COMPARISONS AND ANALYSES

A. Comparison of the Objective Values

We first compare these algorithms on 17 test instances in
terms of effectiveness. The experimental results are shown
in Table IV. The best min and mean objective values are
highlighted. Behind the mean objective values of ILS, GA, SA,
VNS, and BACO, there are two symbols. ↑, ↓, and ↕ means the
algorithm is significantly worse than, significantly better than,
and equal to CBACO-D or CBACO-I, respectively. Behind
the mean objective values of CBACO-D, there is one symbol
representing the Friedman test result between CBACO-D and
CBACO-I. ‘w/t/l’ shows on how many instances the compared
algorithm wins, ties, or loses to CBACO-D and CBACO-I.
‘BKS’ represents the best known solution. ‘rank’ shows the
rank of each algorithm according to the Friedman test.

From the overall rank of the compared algorithms, we
can get CBACO-I<BACO<VNS<CBACO-D<SA<GA<ILS
(A<B means A is better than B). First, we compare CBACO-
D and CBACO-I with other algorithms. Then, they two are
compared with each other to show the advantages and disad-
vantages of each encoding scheme.

• Setting 150 as a demarcation line, we can find that
CBACO-D is extremely effective and stable on E22 to
X143. Only on E33 it was beaten by VNS. On the
other instances with less than 150 customers, CBACO-
D either has competitive performance or significantly
outperformed the others. On E101 and X143, it has even
updated the best known solutions. Also, its performance
is very stable that the standard deviations of the results
are usually very small. On the instances with more than
150 customers, the performance of CBACO-D is barely
satisfactory. Its performance is similar to GA and SA on
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TABLE IV
COMPARISON BETWEEN CBACO AND THE STATE-OF-THE-ART ALGORITHMS ON 17 BENCHMARK INSTANCES IN TERMS OF OBJECTIVE VALUE.

case index BKS ILS GA SA VNS BACO CBACO-D CBACO-I

E22
best 384.67 384.67 384.67 384.67 384.67 384.67 384.67 384.67
mean 385.69↕↕ 384.67↕↕ 384.67↕↕ 384.67↕↕ 384.67↕↕ 384.67↕ 384.67
std. 2.11 0.00 0.00 0.00 0.00 0.00 0.00

E23
best 571.94 590.35 571.94 571.94 571.94 571.94 571.94 571.94
mean 592.05↑↑ 571.94↕↕ 571.94↕↕ 571.94↕↕ 571.94↕↕ 571.94↕ 571.94
std. 1.04 0.00 0.00 0.00 0.00 0.00 0.00

E30
best 509.47 509.47 509.47 509.47 509.47 509.47 509.47 509.47
mean 509.47↕↕ 509.47↕↕ 509.47↕↕ 509.47↕↕ 509.47↕↕ 509.47↕ 509.47
std. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

E33
best 840.14 840.57 844.25 840.57 840.14 840.57 840.57 840.57
mean 844.07↑↕ 845.62↑↑ 854.07↑↑ 840.43↓↓ 842.30↑↕ 840.57↓ 843.59
std. 7.78 0.92 12.80 1.18 1.42 0.00 1.29

E51
best 529.90 529.90 529.90 533.66 529.90 529.90 529.90 529.90
mean 539.03↑↑ 542.08↑↑ 533.66↑↑ 543.26↑↑ 529.90↕↕ 529.90↕ 529.90
std. 6.92 8.57 0.00 3.52 0.00 0.00 0.00

E76
best 692.64 694.64 697.27 701.03 692.64 692.64 692.64 692.64
mean 704.24↑↑ 717.30↑↑ 712.17↑↑ 697.89↑↑ 692.85↕↕ 692.88↕ 694.58
std. 7.15 9.58 5.78 3.09 0.81 0.92 3.33

E101
best 839.29 841.02 852.69 845.84 839.29 840.25 838.84 840.69
mean 851.62↑↑ 872.69↑↑ 852.48↑↑ 853.34↑↑ 845.95↑↕ 840.56↓ 845.95
std. 6.93 9.58 3.44 4.73 4.58 0.42 4.03

X143
best 15901.23 16058.29 16488.60 16610.37 16028.05 15901.23 15884.58 15895.52
mean 16318.57↑↑ 16911.50↑↑ 17188.90↑↑ 16459.31↑↑ 16031.46↑↕ 15930.76↓ 15993.34
std. 160.07 282.30 170.44 242.59 262.47 31.15 47.27

X214
best 11133.14 11323.56 11762.07 11404.44 11323.56 11133.14 11579.18 11091.37
mean 11537.58↓↑ 12007.06↕↑ 11680.35↕↑ 11482.20↓↑ 11219.70↓↕ 11706.55↑ 11245.18
std. 72.55 156.69 116.47 76.14 46.25 38.73 66.09

X352
best 26478.34 27947.89 28008.09 27222.96 27064.88 26478.34 27800.71 26456.95
mean 28364.41↑↑ 28336.07↕↑ 27498.03↕↑ 27217.77↓↑ 26593.18↓↕ 27953.59↑ 26637.80
std. 142.04 205.29 155.62 86.20 72.86 56.33 91.24

X459
best 24763.93 26511.28 26048.21 NA 25370.80 24763.93 25648.48 24776.44
mean 26726.69↑↑ 26345.12↕↑ 25809.47↕↑ 25582.27↓↑ 24916.60↓↕ 25884.82↑ 24911.98
std. 126.93 185.14 157.97 106.89 94.08 78.66 72.95

X573
best 51929.24 53102.46 54189.62 51929.24 52181.51 53822.87 52706.59 53818.40
mean 53507.46↑↓ 55327.62↑↑ 52793.66↕↓ 52548.09↓↓ 54567.15↑↕ 52853.78↓ 54264.16
std. 275.76 548.05 577.24 278.85 231.05 53.12 197.71

X685
best 70834.88 74409.65 73925.56 72549.90 71345.40 70834.88 74816.89 70943.23
mean 75087.58↕↑ 74508.03↓↑ 73124.98↓↑ 71770.57↓↑ 71440.57↓↕ 75144.84↑ 71339.17
std. 259.60 409.43 320.07 197.08 281.78 191.72 297.11

X749
best 80299.76 84298.43 84034.73 81392.78 81002.01 80299.76 82721.82 80042.38
mean 84860.28↑↑ 84759.79↑↑ 81848.13↓↑ 81327.39↓↑ 80694.54↓↕ 83035.49↑ 80571.38
std. 287.26 376.10 275.26 176.19 223.91 147.63 222.72

X819
best 164289.95 168651.19 170965.68 165069.77 164289.95 164720.80 165219.00 163751.23
mean 169837.06↑↑ 172410.12↑↑ 165895.78↕↑ 164926.41↓↕ 165565.79↕↑ 165650.45↑ 164826.42
std. 483.35 568.58 403.70 318.62 401.02 208.70 599.22

X916
best 341649.91 348733.86 357391.57 342796.88 341649.91 342993.01 342436.63 341369.36
mean 350822.41↑↑ 360269.94↑↑ 343533.85↕↕ 342460.70↓↕ 344999.95↑↑ 343334.11↕ 343127.47
std. 1177.08 229.19 556.98 510.66 905.72 357.84 877.97

X1001
best 76297.09 79493.37 78832.90 78053.86 77476.36 76297.09 79046.58 75666.26
mean 79928.29↕↑ 79163.34↕↑ NA↓↑ 77920.52↓↑ 77434.33↓↑ 79293.37↑ 76405.53
std. 265.91 NA 306.27 234.73 719.8671 123.11 337.78

w/t/l vs D 1/4/12 1/7/9 3/9/5 10/3/4 6/6/5
vs I 1/3/13 0/3/14 1/4/12 2/5/10 0/14/3 4/6/7

rank 5.39 5.84 4.43 3.24 2.84 3.69 2.56

most of the large-scale instances, which is overall worse
than VNS and BACO. The only exception is X916 where
it has similar performance with CBACO-I.

• CBACO-I inherits from BACO the indirect encod-
ing scheme. Because of the confidence-based selection
method, it is more efficient than BACO. That is why
CBACO-I has given better mean objective values on the
last five large-scale instances than BACO. Because of the
improvement of the efficiency, CBACO-I has achieved
the same level of performance as VNS on X819 and
X916 but did not surpass VNS. Meanwhile, CBACO-I
did not perform well on X573 either just like BACO.

The reason that CBACO-I did not surpass VNS on these
three instances is the pheromone mismatching problem
that we have mentioned before, but there are two different
factors aggravating the influence of the mismatching. For
X573, most customers are far away from the depot, as
shown in Fig. 4(c), which makes the edges between
customers and the depot occupy a big proportion of the
total traveling distance of the routes. For X819 and X916,
the pheromone mismatching comes from the distribution
of customer demand. Fig. 7 shows the normalized distri-
butions D(ci/Qc) of customer demand of the large test
cases. As we can see from Fig. 7, in X819 and X916, the
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Fig. 7. The normalized distributions D(ci/Qc) of customer demand of the
ten large test cases.

average demand of a customer is very high so that each
EV can only serve a small number of customers. There
will be a large number of routes in the solutions of X819
and X916, which brings a lot of edges linked between
the depot and the customers. Therefore, the pheromone
mismatching problem is worsened. For the other test
cases, since the average demand is low, an EV can serve
many customers before returning to the depot. There are
only a few of the edges linked between the depot and the
customers. Thus, the pheromone mismatching problem
does not have a major impact to the final performance.

The comparison between CBACO-D and CBACO-I gives us
a guideline of when to use each of them. In general, CBACO-
D shows dominant performance on instances with less than
150 customers, and CBACO-I performs better on the other
large-scale instances.

The reason that CBACO-D performs better on small-scale
instances but worse on large-scale instances is the dependence
on local search methods, especially the inter-route local search
method 2-opt*. For small-scale instances, the number of local
optima is small and the quality of the local optimal solutions is
usually not bad. The applied local search methods are capable
enough to lead the initial solutions to the global optimum or
good local optima. However, when the scale of the instance
increases, the number of local optima increases dramatically
and most of the local optimal solutions are poor. Under such
circumstances, the local search methods do not have the ability
to lead the solutions to good local optima. Meanwhile, since
many solutions generated by ACO are guided to poor local
optima by the local search methods, the algorithm encoun-
ters the premature convergence problem that the pheromone
matrix updated by the poor local optimal solutions makes the
algorithm stuck there. Compared with CBACO-D, CBACO-I
is less dependent on inter-route local search methods since
the splitting algorithm can guarantee the best partition of
the giant tour. The solutions generated by CBACO-I during
the evolution process are more diverse. The high diversity
can protect the algorithm from premature convergence. Thus,
CBACO-I performs well on large-scale instances. However,
the high diversity sacrifices the exploitation ability a little
which makes CBACO-I less effective and less stable than
CBACO-D on small-scale instances.

B. Comparison of Convergence

Then, the convergence curves of ILS, BACO, CBACO-D,
and CBACO-I on X143-X1001 are drawn in Fig. 8 to check
the algorithms’ converging speeds. The convergence curves of
GA, SA, and VNS are not available because both their codes
and papers have not been published yet.

From the figures, we can get the following observations:

1) There is not a universal rank of the converging speed
that can fit all instances. Generally, the converging speed
of ILS is slower than the others except for X573 on
which ILS surpasses BACO and CBACO-I and X685
on which ILS surpasses CBACO-D. ILS usually has a
fast converging speed in the early stage. Then, in the
middle and later stages, it maintains a steady but very
slow converging speed. This is because of the adopted
perturbation method, i.e. double-bridge, that only changes
four links each time. For problems with more than one
hundred customers, changing four links each time is
inefficient for exploration.

2) Among the three ACO-based algorithms, CBACO-D has
the quickest converging speed that it usually takes only
one fifth of the total execution time to converge. The
reason of the quick converging speed of CBACO-D is
its dependence on local search algorithms, especially
the inter-route local search method. Since all the good
solutions generated in the early stage are pushed into
local optima by local search and the pheromone matrix
is updated according to these solutions, the exploration
ability of CBACO-D degenerates rapidly. On most of
the instances, the quick converging speed of CBACO-
D leads to premature convergence, but sometimes, if the
local search methods fits the problem well, CBACO-D
can get very good results in a short time such as on X143,
X819, and X916. The superiority of CBACO-D on small-
sale instances like X143 has been explained previously.
On X819 and X916, Fig. 8(h) and Fig. 8(i) show that
CBACO-D establishes its advantage in the very beginning
because of the local search methods. From Table I, we
can see that X819 and X916 share a characteristic that
there are a lot of routes in the problem and each route
does not have many customers. For X819, the average
number of customers per route is 4.78 and for X916, it is
4.42. Obviously, under the circumstances, the inter-route
local search will be very effective.

3) Comparing BACO and CBACO-I that both use indi-
rect encoding scheme, we can see that the confidence-
based selection method has successfully accelerated the
converging speed of CBACO-I without interfering the
effectiveness of the algorithm. On X143-X459, there is
no significant difference between BACO and CBACO-I in
terms of both converging speed and final result. On X573-
X1001, CBACO-I showed obviously faster converging
speed than BACO, and due to the fast converging speed,
CBACO-I also got obviously better final solution on
the last three instances. On X143-X459, since the scale
of the problem is not very large, the local search and
the lower-level optimization processes do not occupy a
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Fig. 8. Convergence curves of ILS, BACO, CBACO-D, and CBACO-I. (a)-(j) represent X143-X1001.

big proportion of the total execution time. Meanwhile,
although we have set a relatively loose threshold for
the confidence-based selection, it may still miss a small
number of iteration best solutions. Under the influence of
these two factors, on X143-X459, the confidence-based
selection method does not improve the converging speed
significantly. By contrast, the local search and the lower-
level optimization processes on larger instances X573-
X1001 consume a large amount of the execution time,
getting rid of the bad sub-solutions can save near half of
the execution time to reach the same level of performance.
Thus, the larger the problem is, the better the confidence-
based selection performs.

Overall, we have verified the efficiency of the confidence-
based selection method. Meanwhile, although CBACO-I
showed comprehensively better capability than CBACO-D,
CBACO-D showed good capability to handle the small-scale
instances with less than 150 customers and the instances that
have many routes with small number of customers per route.

C. Comparison between Different Selection Strategies

The comparison between BACO and CBACO-I has verified
that the confidence-based selection strategy is more efficient
than selecting all sub-solutions to do local search and lower-
level optimization. As we have stated in Section IV.A, there
is another selection strategy that only selects the iteration best
solutions to conduct local search and lower-level optimization.
Here, we compare our confidence-base selection method with
this simple strategy to verify that only selecting one is not
enough for ACO to solve CEVRP. BACO is re-implemented
with this strategy that only selects the iteration best sub-
solution in terms of f ′, i.e. the total length of the sub-solution
before local search and lower-level optimization, and it is
denoted as BACO-ONE. It is compared with CBACO-I and
BACO since they all use indirect encoding scheme. We choose
X459 and X685 to make the comparison. On X459, although
the confidence-based selection did not improve the efficiency,
it did not affect the final performance as Fig. 8(d) showing.
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Fig. 9. Convergence curves with standard deviation of the three selection
strategies: selecting all, selecting one, and confidence-based selection. (a)
X459, (b) X685.

On X685, the confidence-based selection method successfully
accelerated the converging speed of CBACO-I as Fig. 8(f)
showing. The comparison results are shown in Fig. 9.

From the comparison, we can clearly see that the strategy
of selecting one is not good. On X459, BACO-ONE did not
accelerate the converging speed of BACO and it incurred the
premature convergence problem that the final performance was
much worse than BACO and CBACO-I. On X685, although
BACO-ONE indeed had a faster converging speed than BACO
in the early stage, it converged too early that the final perfor-
mance was still much worse than BACO and CBACO-I. Also,
it is worth noting that even the converging speed BACO-ONE
is faster than BACO in the early stage on X685, its converging
speed is still slightly slower than CBACO-I, which perfectly
demonstrated the efficiency and effectiveness of the proposed
confidence-based selection method.

D. Investigation of SE

The effectiveness and efficiency of SE is investigated
through comparison with the other heuristics including, for-
ward heuristic (FH), greedy heuristic (GH), removal heuristic
(RH), and the restricted enumeration heuristic (RE). FH finds
a nearest charging station for an EV whenever the EV cannot
reach its next customer. GH inserts charging stations into a
route to minimize the electricity deficit of the route [19]. RH
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TABLE V
COMPARISON OF THE OBJECTIVE VALUE AND THE EXECUTION TIME (US)

AMONG SE, FH, GH, RH, AND RE

case index SE FH GH RH RE

E22 obj. 384.68 394.79 384.68 384.68 384.68
time 44 20 1390 100 131

E23 obj. 571.95 589.58 599.23 571.95 571.95
time 48 18 3791 128 237

E30 obj. 509.47 531.26 509.47 509.47 509.47
time 37 15 629 155 84

E33 obj. 840.57 876.81 840.57 840.57 840.57
time 71 18 1484 170 176

E51 obj. 529.90 567.23 529.90 529.90 529.90
time 59 10 1900 107 160

E76 obj. 692.64 726.48 692.64 692.64 692.64
time 46 9 1524 108 142

E101 obj. 838.84 893.84 842.73 838.84 838.84
time 65 9 2015 128 194

X143 obj. 15884.58 16981.99 15957.38 15884.58 15884.58
time 114 6 1566 234 298

X214 obj. 11091.37 11500.43 11091.37 11091.37 11091.37
time 108 11 2582 327 220

X352 obj. 26465.91 26743.32 26610.69 26465.91 26456.95
time 125 35 16811 410 739

X459 obj. 24763.93 24928.12 24923.01 24763.93 24763.93
time 180 28 12358 821 515

X573 obj. 52662.37 53127.51 52808.50 52662.37 52662.37
time 398 27 6058 991 1003

X685 obj. 71817.18 71772.45 70952.02 71817.18 70834.89
time 339 76 23837 853 890

X749 obj. 80059.61 81277.84 80443.05 80063.24 80042.38
time 269 87 26595 798 1044

X819 obj. 163999.08 164447.65 163919.11 163999.08 163751.23
time 253 111 17547 708 977

X916 obj. 342475.75 342408.37 341799.17 342475.75 341369.36
time 311 156 9088 665 1012

X1001 obj. 75667.82 76752.63 76144.27 75667.82 75666.26
time 761 44 16739 1774 1974

inserts charging stations into every pair of successive nodes of
a route and then removes redundant ones [8]. RE is a complete
enumeration method that considers more charging stations than
SE [8]. To compare these heuristic algorithms, we remove the
charging stations in the best solutions that we have ever found
and apply these different heuristics to them respectively. The
objective values and execution time are shown in Table V.

From the perspective of the effectiveness (objective value),
the general rank of these heuristics is RE<SE<RH<GH<FH
(the lower the better), although there are some special sit-
uations such as X819 and X916 on which FH or GH has
shown better results than SE and RH. From the perspective of
the efficiency (execution time), the rank of these heuristics is
FH<SE<RH<RE<GH (the lower the better).

Regarding both effectiveness and efficiency, SE is in the
second place which means that it is a very good choice. On
small-scale problems with less than 300 customers, it can
guarantee to find the optimal recharging schedule as same as
RE can do. On large-scale problems, it can generate a good
recharging schedule very quickly.

E. Complexity of FRVCP and SE

After getting the empirical analysis of SE, we study its
theoretical complexity to gain an insight into FRVCP. Assume
we have a route that contains nr nodes including customers

and a depot, and m charging stations are available. Setting
a maximum number of recharging in this route to q, we
know that there will be totally Cq

nr
·mq different recharging

schedules. If q ≈ nr meaning that the vehicle needs to
recharge between every pair of successive nodes in the route,
the number of candidate recharging schedules is mnr which
grows exponentially with nr. Thus, the complexity of the
lower-level optimization of CEVRP, i.e. FRVCP, is very high
theoretically. As to the SE heuristic, since only the best
charging station that brings minimum extra cost is considered
between each pair of nodes, Cq

nr
recharging schedules will be

considered.

However, is the practical situation on the test instances as
horrific as the theoretical analysis? In this section, we make
an analysis to check the real values of the two variables nr

(the number of customers and depot in one route) and q (the
number of recharging needed in one route). m is already
shown in Table I. The best solutions that we have gotten from
the experiment are taken to analyze. The results are shown in
Table VI.

From Table VI, we can see that range of the maximum num-
ber of customers in one route is [7, 41], which is in line with
real-world supply chains of supermarkets or grocery stores
[55]. It means that the maximum nr of the test instances is
41. Then, we can see that the maximum number of recharging
of one route is three on X352. Thus, q is actually at most three
for the test instances.

Since q is far less than nr that can be considered as a
constant value, Cq

nr
·mq ≈ (nr ·m)q , which becomes polyno-

mial. Thus, although FRVCP is theoretically non-deterministic
polynomial hard (NP-hard) [56], its real complexity in CEVRP
is quite close to polynomial rather than NP. Accordingly, the
time complexity of the SE heuristic is approximately equal to
O(nr

q) that is also polynomial.

The antagonism between the complexity of FRVCP and the
quality of the CEVRP solution is the main reason that the
FRVCP in CEVRP is not as horrific as theoretical analysis.
Considering a solution of CEVRP that requires the vehicles
to recharge between each pair of successive customers, we
intuitively know that this solution is poor since with a large
probability, it has scheduled some customers that are far away
from each other to the same vehicle. Thus, although the
complexity of FRVCP is high under this specific solution, it
is unnecessary to consider this solution. For a good solution
that does not need to recharge the vehicles many times, we
need to optimize the FRVCP under it but the complexity of
FRVCP becomes lower.

These analyses verify the rationality of using SE to solve
FRVCP in CEVRP. However, it is worth noting that FRVCP
is just a lower-level sub-problem in CEVRP. For a bi-level
optimization problem like CEVRP, even a polynomial com-
plex sub-problem can enlarge the search space dramatically
since the original problem itself is NP-hard. Also, we have
arbitrarily eliminated many possible recharging schedules in
SE to make it efficient. Thus, on the large-scale instances, it
cannot guarantee to give the optimal recharging schedule.
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TABLE VI
THE NUMBER OF CUSTOMERS n AND THE NUMBER OF RECHARGING q IN

ONE ROUTE.

nr q
inst. mean max mean max
E22 6.25 7 0.75 1
E23 8.33 15 1 2
E30 8.25 14 0.25 1
E33 9 15 0.5 1
E51 11 13 1 1
E76 11.71 17 0.71 1
E101 13.5 17 1 2
X143 21.29 26 0.86 2
X214 18.75 23 0.42 1
X352 9.54 15 0.59 3
X459 17.96 41 0.52 2
X573 20.07 38 0.57 2
X685 9.77 21 0.55 2
X749 8.48 13 0.62 2
X819 5.57 7 0.55 2
X916 5.28 7 0.61 2
X1001 23.73 29 0.73 2

VII. CONCLUSIONS AND FUTURE WORKS

The goal of this paper is to pursue better performance of
ACO in handling CEVRP. This goal has been successfully
achieved by proposing a new algorithm, i.e. CBACO. Through
applying the confidence-based selection strategy and different
encoding schemes, CBACO has shown competitive results
compared with the state-of-the-art algorithms and updated
eight of best known solutions out of the seventeen benchmark
instances. The proposed confidence-based selection method
has greatly improved the efficiency of the algorithm without
compromising the effectiveness. Meanwhile, according to the
experiments, we had achieved a guideline. 1) When the scale
of the instance is smaller than 150 or the number of customer
per route is smaller than seven, CBACO-D is an efficient
and effective choice. 2) When the scale of the instance is
larger than 150, we recommend CBACO-I because of its high
exploration ability. 3) The only exception is the problem with
large scale and the customers gather around a place far away
from the depot where CBACO is not a good choice.

Regarding the future research on EVRP, there are mainly
two directions to follow. 1) From the problem perspective,
besides CEVRP, there are still many other EVRP variants,
such as EVRPTW, EVRP with nonlinear charging func-
tion, and EVRPPD. Exploring the application of the bi-level
population-based meta-heuristic algorithms on these problems
is a promising direction. 2) From the algorithmic perspective,
the confidence-based selection method proposed in this paper
may only suit a few algorithms that rely on the best solutions,
either iteration best or overall best, to evolve. For some algo-
rithms like GA and particle swarm optimization, it may not
be suitable. Meanwhile, adaptive parameter tuning methods
should be designed to control the confidence-based selection
process automatically as part of the future work. Also, the
proposed lower-level optimization technique, i.e. SE, is hard
to be directly applied to other EVRP variants. Thus, more
selection strategies and corresponding heuristics should be
designed to meet the requirement of different problems and
algorithms in the future.
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